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Abstract: Two models were developed to simulate energy flows in a mangrove area of A. germinans
and A. bicolor in the Bay of Panama, considering the importance of these areas in CO2 fixation.
The first model (black box) consisted of the use of artificial neural networks for estimation, using
meteorological data and energy flows calculated by the Eddy Covariance method for model training.
The second model (grey box) used the RC circuit theory, considering a non-steady state model for
the flow of water from the ground to the atmosphere. A methodology was developed to reduce
the uncertainty of the data collected by the sensors in the field. The black box model managed to
predict the fluxes of latent heat (R2 > 0.91), sensible heat (R2 > 0.86), CO2 (R2 > 0.88), and the potential
of water in the air (R2 > 0.88) satisfactorily, while the grey box model generated R2 values of 0.43
and 0.37, indicating that it requires further analysis regarding the structuring of the equations and
parameters used. The application of the methodology to filter the data improved the effectiveness of
the model during the predictions, reducing the computational capacity necessary for the resolution
of the iterations.

Keywords: artificial neural networks; black box model; eddy covariance; energy flow measurement;
grey box model

1. Introduction

The increase in the planet’s temperature, attributed to the production of greenhouse
gases, has increased the interest in improving industrialization practices and finding
techniques that allow for mitigating CO2 concentrations in the atmosphere [1]. Mangroves
can store more carbon per hectare, compared to tropical forests; they are also essential to
maintain terrestrial and marine fauna [2–4]. In addition, these mangrove coastal areas can
retain pollutants such as heavy metals in the tributaries, as well as reduce the effects caused
by strong waves, floods, and even cyclonic winds, thanks to the presence of abundant
aerial biomass that manages to dissipate the energy coming from of the outside [4–11].
Despite the importance of mangrove areas, they are affected worldwide due to bad human
practices through fishing, logging, and the construction of spaces for tourism, interventions
that modify the concentrations of nutrients and the hydroperiod of the ecosystem [12,13].

We can find multiple studies that analyze the energy exchange in coastal areas, as well as
the hydrological modifications they suffer due to the intervention of the human being [14–17].
Such studies allow us to understand the dynamics of these ecosystems, evidencing the
significant contribution to the capture and fixation of CO2 from the atmosphere through
trees and sediment transport, monitoring the resources available to the ecosystem to analyze
the productivity and efficiency in the transfer and dissipation of energy [18].
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Sensible heat flux (H), latent heat flux (LE), and ground heat flux (G) are the main
ways in which the forest processes the radiation it receives from the sun. These energy
flows condition the productivity of forests, which is why there are multiple strategies to
determine them [19]. The Eddy Covariance (EC) method is one of those used to determine
flows, where variables such as CO2/H2O concentrations, wind speed, and direction are
recorded, considering the exchange between the forest and the atmosphere due to the
turbulent flow of the wind [20]. This method requires the installation of sophisticated
measurement equipment to record meteorological variables, which translates into a consid-
erable initial investment. Therefore, many authors choose to estimate LE and H through
simulations [19]. Other methods used include remote sensing, the Penman–Monteith
equation, the Shuttleworth and Wallace method, and artificial neural networks [21,22].

One of the main advantages of remote sensing lies in the ability to monitor large areas
based on satellite images that are recorded for the treatment and identification of vegetation
indices. However, the most direct way to measure evapotranspiration is related to the EC
method [23]. Multiple crops were analyzed by [24] to determine evapotranspiration using
remote sensing, obtaining a coefficient of determination R2 of 0.74 when the data were
compared with measurements obtained by Bowen’s relationship. In the case of [25], an
estimate of the evapotranspiration of a vineyard was made, obtaining an R2 of 0.63 when
comparing remote sensing with the EC methodology.

Artificial neural networks allow complex data processing, finding patterns between
input and output variables, and allowing the prediction of behaviors of interest with
much more accuracy than the aforementioned models [19]. This method has been used
by multiple authors to estimate LE and H in different ecosystems around the world, but
it should be noted that the configuration of these networks is often based on trial and
error [26–33].

If more specific parameters of the forest are known, such as the water conditions of the
tree, respiration, and factors that intervene during the photosynthesis process, it is possible
to use methods that can predict the exchange between the forest and the atmosphere, such
as soil-plant-atmosphere-continuum (SPAC) [34], where the flow of water in a non-steady
state can be considered, to structure an analogy of electrical systems such as RC or RCL
circuits such as those developed by [35–41]. The work developed by [42] considered a
steady state flow; later [43] questioned these assumptions because it is far from the reality
of the process, recommending the use of non-steady states in the plants. Continuing the
focus on trees, there is the work of [44] where multiple allometric equations have been
presented that attempt to estimate growth rates and carbon fixed in their biomass.

The objective of the study is to verify the effectiveness of artificial neural networks to
predict LE, H, CO2 flux (FC), and the potential of water in the air in mangrove ecosystems
(Black box model), as well as to propose a methodology to determine the parameters that
arise when using an RC circuit to estimate climatic variables within the ecosystem through
state space representation (Grey box model). Because there are values for the latent heat
and the potential of water in the air, the use of the cohesion-tension model is proposed to
estimate the value of the resistances of the system, referring to the species that coexist in
the area. The hypothesis for the use of this model (grey box) is that it may be possible to
know the hydrological properties of the trees that make up the forest, using the records of
latent heat and water potential generated by sensors installed in the area.

2. Materials and Methods
2.1. Artificial Intelligence

Artificial intelligence refers to the possibility that a machine can have to imitate the
cognitive abilities of the human brain, being used in branches such as psychology, medicine,
and statistics, among others [45]. Within artificial intelligence is machine learning, where
its algorithms collect information on the selected database, making decisions based on
patterns that were identified during the training process. A model is said to be learning
if their performance on tasks, as measured by a performance benchmark, improves with
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experience assigned during training. The training process is realized through a training
dataset, a collection of data points used to minimize the error between the predicted and
real output, as established by the dataset. While the training process inevitably minimizes
the training error, the goal of the optimization is to minimize the error in an unseen dataset,
called the testing set. A model capable of performing acceptably in a testing dataset is
said to have a good generalization capacity. Both training and testing or generalization
errors vary with the characteristics of the training dataset, which include its size (number
of examples), quality, and comprehension of the system’s dynamic behavior [46,47].

A subset of machine learning is artificial neural networks, models that consist of inter-
connected processing units called neurons. These interconnections allow to store knowledge
acquired by the model during the learning process. The neural network seeks to define the
function expressed in (1), where the parameters (θ) identified as optimal during the training
process are processed together with the inputs (x) to obtain the output (y) [47,48].

y = f (x; θ) (1)

A neuron is the fundamental processing unit in a neural network. The block diagram
in Figure 1 shows the model of a neuron. The main elements of a neuron are:

• A set of synapses: each input “xj” corresponding to a neuron “k” is multiplied by
a weight “wkj” which represents a parameter optimized by the machine learning
algorithm.

• A summation process to add the “m” number of inputs multiplied by their weights.
• The activation function ϕ(vk) that will determine the output of the neuron.
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The respective equations for the process carried out by the neurons are shown in
(2) and (3).

vk =
m

∑
j=0

wkjxj (2)

yk = ϕ (vk) (3)

2.2. Non-Steady State Model

The flow of water in trees can be explained by the cohesion-tension theory, which
considers that the difference in pressure between the soil and the atmosphere allows the
flow of water to rise through the xylem to be used within their biological processes such
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as respiration and photosynthesis [41]. Being considered a hydraulic system, the medium
could generate some resistance to the passage of the fluid, which is why the hydraulic
conductances (or their inverse, the resistances) are considered, as well as the storage of
water in the different parts of the tree. These considerations allow for obtaining results that
are much closer to the real conditions of the analyzed process [43].

Considering the net assimilation of CO2, the work of [49] is observed, where he
presents a model that involves stomatal conductance (gs):

gs =
1.6 A

Cs − Ci
(4)

where Cs is the concentration of CO2 in the environment, Ci is the concentration of CO2 in
the stomatal cavity, and A the net assimilation of CO2 (µmol m−2s−1) determined by (5):

A = ((Am + Rd)[1− e
−ε Ia Fc
Am+Rd ]− Rd)Fco2 (5)

where Am is the net assimilation as a function of CO2 (mg m−2s−1), Rd is leaf respiration
(mg m−2s−1), Ia photosynthetic active radiation (PAR) reaching the (µmol m−2s−1), ε is
the initial quantum use efficiency (mg CO2 [ J PAR]−1), Fc is a conversion factor between
PAR and its association with energy: Fc = 0.22 J PAR µmol−1 according to the ratio of
1 mol of photons ≡ 0.22 MJ PAR. Fco2 is a conversion between the mass unit and molar unit
of CO2 (22.727 µmol CO2 [g CO2]

−1). This methodology was used in [49] because they had
enough information on the type of species analyzed, collecting information in the study
area and complementing with works developed by other authors.

The hydraulic system can be represented by the analogy of Ohm’s law and it is used
to determine the transpiration of trees or meteorological conditions such as the potential
of water in the air [50]. Detailed explanations can be found in the works of Tyree and
Ewers [42] and Kumagai [43]. Figure 2 shows a representative scheme of the analogy,
including the potential of water in the air (Ψair) and the ground (Ψs), the evapotranspiration
(ET), the hydric resistance (R), and the water storage (C) equivalents of the system.
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Analyzing Figure 2, it is possible to extract an equation through a flow balance, shown
in (6), where the known variables would be Ψair determined by (7) [50] and ET obtained by
the (EC) method.

Ψs −Ψair

R
+ ET = C

dΨair

dt
(6)

Ψair =
RT
Vw

ln(RH) (7)

where, Vw represents the partial molar volume of water (18.05 × 10−6 m3/mol), T (K)
the air temperature at 30.3 m, R the constant for ideal gases (8.31 Pa m3/mol K), and
RH the relative humidity. For the development of (6), it is possible to use a state space
representation shown in (8).[

dΨair

dt

]
=

[
1

CR
(G− 1)

]
[Ψair] +

[
1
C

]
[ET] (8)
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The variable G is a representation of the proportionality that must exist between
Ψair and Ψs (Ψs = G ∗ Ψair), because in practice the determination of Ψs is based on the
measurement of the water potential in the leaves before dawn [51]. Once the state space
representation is obtained, we proceed to use the identification process and optimization
functions such as “idgrey” to enter the matrix and “greyest” for the solution through
the method of least squares to minimize the error between the estimated and measured
variables in the software MATLAB (version 2020b, 9.9.0.1467703) [52].

2.3. Site Information

The experimental site (9◦00′51.82” N 79◦27′10.60” W) is located in a mangrove forest
in the Bay of Panama (Figure 3), within the Juan Díaz neighborhood with an average
temperature of 27 ◦C per year. Among the species that can be found close to the study
area are Rhizophora mangle, Laguncularia racemosa, Avicennia germinans, and Avicennia bicolor,
the last two species being present in the study area [53]. This area was selected due to the
presence of a 30.3 m flow measurement tower (Figure 4) with multiple sensors (Table 1),
with a radius of action of 300 m, to record meteorological variables such as wind speed and
direction, temperature, CO2, and water vapor concentrations.
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Table 1. Sensors were installed in the study area.

Sensors Model

Wind monitor Young Model 05103V
Ultrasonic Anemometer Young Model 86106

Air humidity Young Model 41382VC
Air temperature
Soil temperature BetaTherm 100L6A1IA

Soil Heat Flux Campbell HFP01SC-L
Radiometer Kipp & Zonen CNR 4

CO2/H2O Open Path Gas Analyzer LI-7500DS

2.4. Data Pre-Processing

The data collected by the flow measurement tower presented problems of atypical
values, high variability, and missing data (Figure 5). MATLAB software is used to assess
these issues. When carrying out field data collection, it is common to find the presence
of atypical values due to the vulnerability of the sensors to natural phenomena or the
intervention of an animal or object that may affect the equipment.
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To remove outliers, the “filloutliers” function was used, which replaces the value that
exceeds three times the standard deviation of the mean by the next value in the database.
The “smoothdata” function was also used, which allows the elimination of “NaN” values
and smooths the behavior of the data (Figure 6), through the application of a moving
average according to a data window assigned by the user. An appropriate window for the
smoothing method should be chosen carefully; if the window is too narrow, the smoothing
carried out is insignificant, while if it is too wide, important dynamic behavior is likely to
be lost. Figure 6a,b illustrate these two possibilities. In this work, it is found that a data
window of five hours (Figure 6c) is appropriate to maintain desired dynamic information
while removing the presence of noise and outliers.
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2.5. Estimation of Energy Flows

For the training of both models, it will be necessary to generate energy flows, which
will be determined using the EC method, considering the vertical speed of the wind, CO2,
and H2O concentrations, among other variables recorded by the tower. Equation (9) was
used to determine H, (10) for LE, and (11) for FC.

H = ρa Cp w′ T′ (9)

LE = L ρa w′ e′ (10)

FC = w′ ρc
′ (11)

where, ρa is the air density, Cp is the specific heat, w′ the deviation in the vertical speed of
the wind, T′ is the deviation in the instantaneous temperature, ρc

′ is the deviation in the
density of the CO2 present in the air, e′ is the deviation in vapor pressure and L is the latent
heat of vaporization.

A Pearson coefficient-based correlation analysis is carried out between the recorded
meteorological variables, as well as the energy flows calculated using the EC method,
allowing us to know the influence that some variables may have regarding the behavior of
the energy flows.

Considering the variability of the recorded data, a time interval was selected where
each variable maintained a controlled behavior, using measurements every 10 minutes from
01/01/2018 00:10 to 12/01/2018 23:50, generating a total of 1727 measurements. The RStudio
Software (version 1.3.1093, Boston, MA, USA. Available online: https://www.rstudio.com/,

https://www.rstudio.com/
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accessed on 10 June 2021) is used for data processing, through the “cor()” and “corplot()”
functions which allow obtaining the correlation plot with their respective values.

2.6. Neural Network Configuration

A deep feedforward neural network was used to model the desired outputs. To struc-
ture the neural network, the “Experiment Manager” application was used, which creates
machine learning-based experiments through different conditions and hyperparameters.
Once configured, the Experiment Manager scans the ranges assigned to each hyperparame-
ter, determining the optimal values according to the performance criteria, in this case, it is
the Root Mean Squared Error (RMSE) (12) of the test set output:

RMSE =

√
1
n

n

∑
d=1

(xd − x̂d)
2 (12)

where xd represents the estimated value and x̂d is the actual value for n number of observa-
tions. The hyperparameters considered to carry out the experiments are as follows:

• Training_days: Due to the variability that may exist in data that depend on weather
conditions, a training range was established that goes between 1 to 15 days, where the
algorithm determines the number of days necessary for the best performance of the
model.

• Hidden_layers: According to [55] using one to two hidden layers could be enough to
obtain a meaningful model, while for [47] the structure of the network depends directly
on the data. The number of hidden layers for this work varied between 2 and 9.

• HiddenUnits: Represents the number of neurons within each hidden layer. Varies
from 10 to 100.

• MiniBatchSize: Refers to the number of samples considered before updating the
weights and bias of the neural network. The lot size is varied between 16 and 128.

• InitialLearnRate: Controls the adjustment of the model parameters concerning the
value of the loss function. The higher the learning rate, the more abrupt the adjust-
ments in the parameters will be, which can cause the model to not reach the global
minimum. The optimal learning rate is determined by varying it between 1 × 10−4 to
1 × 10−2 [56].

• Inputs considered: Five fixed inputs were used, wind speed in its three components,
CO2, and H2O absorptance. Additionally, the model could select the following vari-
ables recorded at the top of the tower: average wind speed (WS_ms_top_Avg), average
wind direction (WindDir_D1_WVT), air temperature (temp10_Avg), and relative hu-
midity (RH10_Avg), so that the algorithm can use the settings that benefit the estimate.

• Variables estimated by the model (outputs): The model will be estimating variables
such as Ψair, FC, H, and LE.

3. Results
3.1. Relevant Variables in the Energy Flow Behavior

The Pearson correlation analysis performed using the variables recorded in the field
of study served to identify which of these have a significant influence on the behavior
of the energy flows analyzed. The variables considered for the analysis were: FC, H,
LE, WS_ms_top_Avg, WindDir_D1_WVT, RH10_Avg and RH1_Avg, sonic temperature
(Aux 4—Ts), wind speeds in its different components (U, V, and W), CO2, and H2O absorp-
tance, the record of CO2 and H2O in mmol, barometric pressure (BP_hPa), average air tem-
perature (CMR4TK), incoming and reflected shortwave radiation (CM3_Up and CM3_Dn),
descending and ascending longwave radiation (CG3_Up_co and CG3_Dn_co), ground heat
fluxes (Shf_Avg1 and Shf_Avg2), vertical velocity standard deviation (Sigma_w), friction
velocity (ustar), and momentum (Tau).

The result of the analysis using Rstudio Software is shown in Figure 7, while the
variables that presented significance (p < 0.001, R > 0.7) are shown in Table 2.
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Figure 7. Correlation analysis of the registered variables. Own elaboration.

Table 2. Significant correlations obtained (R > 0.7).

H Shf_avg1 Shf_avg2 Sigma_w Ustar

CM3_up 0.90 0.73 0.86
CM3_dn 0.89 0.71 0.84
CNR4TK 0.74 0.89 0.92
Shf_avg2 0.80
CG3_dn 0.73 0.91 0.91

Ws_ms_top_Avg 0.75 0.74

3.2. Energy Flows Estimation through the Black Box Model

The proposed black box model was applied to January and September 2018, using the
first 15 days of each month for model training, and then performing the testing process
with any remaining day of the month. The values initially assigned to the hyperparameters
are shown in Table 3, while the optimal values according to the model for January and
September 2018 are presented in Tables 4 and 5, respectively, being used for validation on
25 January and 25 September.
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Table 3. Initial configuration of hyperparameters for the black box model.

Hyperparameters Range

Initial Learn Rate [1 × 10−4, 1 × 10−2]
Mini Batch Size [16, 128]
Training days [1, 15]
Hidden layers [1, 8]
Hidden Units [10, 100]

Table 4. Hyperparameters of the model for January 2018.

Hyperparameters LE FC H Ψair

Initial Learn Rate 0.0094 0.0033 0.0048 0.0100
Mini Batch Size 106 110 71 47
Training days 15 8 12 14
Hidden layers 3 3 9 7
Hidden Units 84 61 94 13

RMSE test 3715.37 1.62 0.42 0.96
Additional variables a, b, c a, b, d a, b c, d

LE (W/m2), FC (mg/m2s), H (W/m2) and Ψair (MPa). Here “a” represents WS_ms_top_Avg, “b” is
WinDir_D1_WVT, “c” is temp10_Avg, and “d” is RH10_Avg.

Table 5. Hyperparameters of the model for September 2018.

Hyperparameters LE FC H Ψair

Initial Learn Rate 0.0008 0.0098 0.0098 0.0010
Mini Batch Size 27 31 20 38
Training days 4 10 6 15
Hidden layers 8 8 6 9
Hidden Units 10 99 10 40

RMSE test 2968.40 1.95 0.44 0.56
Additional variables a, b, c, d d - a, b, c, d

LE (W/m2), FC (mg/m2s), H (W/m2) and Ψair (MPa). Here “a” represents WS_ms_top_Avg, “b” is
WinDir_D1_WVT, “c” is temp10_Avg, and “d” is RH10_Avg.

From Tables 4 and 5 can be observed the difference in the hyperparameters depending
on the training dataset used. These differences can be attributed to the season in which
the training data are collected. At the location, January corresponds to one of the driest
months, while September belongs to the rainy season. These different weather conditions,
as well as the possible discrepancies in data recollection, could explain the variation in
hyperparameters’ optimal values.

Obtaining the most efficient configuration for the hyperparameters, we proceed to
estimate the energy fluxes for FC, LE, H, and Ψair presented in sections a, b, c, and d for
January (Figure 8) and September (Figure 9). For January, FC obtained an R2 value of 0.95
(Figure 8a), while for September it decreased to 0.88 (Figure 9a). For LE there was also a
reduction in the R2 coefficient from 0.93 to 0.91 (Figures 8b and 9b), however, for H and Ψair
there was an increase when comparing the months, from 0.86 (Figure 8c) to 0.88 (Figure 9c)
and from 0.88 (Figure 8d) to 0.99 (Figure 9d), respectively.
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3.3. Water Potential in Air through the Grey Box Model

The data that were used in the grey box model were based on the daily behavior
presented by the input variable LE, from 1 January 2018 to 26 June 2018, whose common
behaviors are shown in Figure 10. Test runs were made using each of the nine behaviors,
where group G managed to generate the lowest estimated error value.

The gray box model presented disadvantages regarding the ability to predict the
variable of interest using highly variable data for the training period, which is why it was
proposed to use days that had a similar behavior for the LE variable, resulting in an increase
of the R2. In the case of the black box model, neural networks and their different layers
allow much more complex data to be analyzed, so it was not necessary to group similar
days to be used during training. Considering that our range of data is not the same for
each model presented, it would not be appropriate to try to compare them between them
even though the R2 can be obtained in both models.

Once the model determines the configuration of R, C, and G that minimizes the
estimation error value (Table 6), the data are used for the validation process, estimating
the Ψair value for 11 May and 2 June (days that did not belong to the training group),
comparing it with Ψair obtained by the EC method. The training process of this model
generated an estimation error value of 13.46% after 4774 iterations. The results obtained
in the validation of 11 May (Figure 11a) show an R2 coefficient of 0.37, while for 2 June
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(Figure 11b) an R2 coefficient of 0.43 was obtained, both representing a very low ability to
predict the behavior of Ψair.

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 10. Behaviors observed in LE data from 00:10 to 23:50. The variability recorded by the sen-
sors can be observed, with surpluses shown in (E), (B) and (C), absence of data for (F), (H) and (I), 
as well as an expected behavior for (A), (D) and (G). Own elaboration. 

Once the model determines the configuration of R, C, and G that minimizes the es-
timation error value (Table 6), the data are used for the validation process, estimating the Ψ  value for 11 May and 2 June (days that did not belong to the training group), com-
paring it with Ψ  obtained by the EC method. The training process of this model gen-
erated an estimation error value of 13.46% after 4774 iterations. The results obtained in 
the validation of May 11 (Figure 11a) show an R2 coefficient of 0.37, while for June 2 
(Figure 11b) an R2 coefficient of 0.43 was obtained, both representing a very low ability to 
predict the behavior of Ψ . 

Table 6. Results of the iterations for the grey box model. 

Parameters Initial Values Estimated by the Model 
C 2.2501 × 104 8.8027 × 104 
R 6.1451 × 105 4.8222 × 104 
G 0.1112 4.2418 × 109 

 

 
(a) 

Figure 10. Behaviors observed in LE data from 00:10 to 23:50. The variability recorded by the sensors
can be observed, with surpluses shown in (E), (B) and (C), absence of data for (F), (H) and (I), as well
as an expected behavior for (A), (D) and (G). Own elaboration.

Table 6. Results of the iterations for the grey box model.

Parameters Initial Values Estimated by the Model

C 2.2501 × 104 8.8027 × 104

R 6.1451 × 105 4.8222 × 104

G 0.1112 4.2418 × 109
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4. Discussion

The correlation analysis carried out showed a weak relationship between the variables
recorded and the resulting energy flows, where only the sensible heat flux obtained a
significant relationship with the values of shortwave radiation, heat flux in the ground,
sonic temperature, and the long wave ascending radiation. The analysis showed negative
correlation values in long wave ascending radiation, sonic temperature, and heat flux in
the ground when related to the relative humidity of the medium (−0.92, −0.90, and −0.81,
respectively). Negative correlations tend to be a common behavior within the analysis
of flows in ecosystems according to [57], where the correlation that existed between the
temperature at different points of the forest (soil, air) and the net exchange of the ecosystem
was analyzed.

Similarly, the authors in [58] carried out a correlation analysis between the CO2 content
in the soil and some measured variables such as pressure, air temperature, soil temperature,
and friction speed. No significant correlation was observed between barometric pressure
and the other variables recorded, but a correlation between friction speed and wind speed
was observed (R = 0.74, p < 0.001), comparable to the work performed in [59], in addition
to a correlation between sensible heat flux and net radiation.

Regarding the energy flow estimation, the study presented in [60] made an approxi-
mation of the value of H in an arid zone, using the atmospheric similarity theory for the
second moment of air temperature. The model results were compared with the calculations
generated by the EC method, whose R2 coefficient was 0.85. The study [21] presented
a record of LE comparisons at different points using a Bayesian model involving five
algorithms: Moderate Resolution Imaging Spectroradiometer (MODIS), Penman–Monteith
for remote sensing, Priestley Taylor based on LE, Modified Satellite-based Priestley Taylor
(MS-PT), and Penman’s semi-empirical algorithm for LE, obtaining R2 values greater than
0.7. In [22], the Shuttleworth and Wallace (SW) model was used to determine the value
of LE on a vineyard in the Maule region, Chile. This model consisted of combining two
one-dimensional models regarding crop transpiration and soil evaporation. The results of
the SW model were compared with the EC method, obtaining an R2 coefficient of 0.77.

Some works where neural networks are used to determine energy flows are [28]
estimating FC (0.45 < R2 < 0.72) and LE (0.51 < R2 < 0.85) for six coniferous forests in
Europe, while in [29] the R2 coefficient for FC was between 0.59 and 0.79, while for LE it
was between 0.83 and 0.88 in a coniferous forest in the United States. The work of [19]
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developed on a corn plantation was also analyzed, obtaining values for LE greater than
0.95 and for H greater than 0.80 concerning the coefficient of determination R2.

The aforementioned models are analyzed, using the R2 coefficient to compare the
effectiveness of some models used according to the literature, where it can be seen that
neural networks as an estimation/prediction method turn out to be very effective. In this
study, the estimates of LE (R2 > 0.91), H (R2 > 0.86), FC (R2 > 0.88) and Ψair (R2 > 0.88)
represent a prediction that is fairly close to the real data.

The grey box model developed using the state space representation solution shows a
low fit to the data calculated using the EC method, 12.45% and 20.52% for May and June,
respectively. In contrast, the use of the cohesion-tension theory in other works requires
the use of multiple equations, but its usefulness lies in the fact that the authors have the
information regarding each of the variables considered (hydraulic conductances, specific
conductivity of branches and leaves, potentials, among others) [38,42,61,62]. Overall,
considering the results obtained, the consideration of the non-linear behavior, involving
many other variables may help increase the effectiveness of the model.

The use of the grey box model to determine the variables that explained some phe-
nomena was used by [52] to represent the thermal dynamics that exist in buildings in
humid and rainy climates. At least 10 different configurations were proposed for the RC
Networks. The output of the model used in the investigation was the internal temperature
of the enclosure, generating RMSE values of 0.3573 ◦C and 0.99 ◦C for each case presented,
implying a good predictive capacity of the model. The use of RC networks for space
conditioning systems has proven to be very efficient, adjusting satisfactorily to the real
conditions of the phenomenon [63–65]. However, the application to the behavior of trees
would require further study regarding the structuring and selection of the variables that
would explain the phenomenon, based on the results obtained within this investigation.

By mentioning the characteristic species of the study area, it was intended to be able
to determine the coefficients related to storage and resistance to the flow of water, using
the gray box model, whose results would be compared with existing data in the literature
(A. germinans). Because the results generated by the gray box model for R, C, and G
did not correspond to physical behavior, it was not possible to obtain the hydrological
characteristics of the trees using the LE record of the tower as the input value.

5. Conclusions

This work proposed the use of two methods for the estimation of parameters that
describe the behavior of the mangrove forest of the Bay of Panama, carrying out a biblio-
graphic review of the models used, as well as the development of a methodology for the
processing of meteorological data that would be used in the investigation.

In the development of a correlation analysis between the registered variables, the
significance could be observed only with H and the heat flux in the soil. Within the period
analyzed, the sensor that measures photosynthetic active radiation (PAR) was not available,
which would have had a direct correlation with FC according to the literature analyzed.

The adequate treatment of the data used was fundamental to obtain accurate results
because the applied methods needed to find patterns among the data during the training
process, to later predict the behavior during the validation of the model. The data recorded
by the tower may have erroneous measurements due to the presence of some external
phenomenon that affects its calibration. Likewise, the behavior of the wind and the
climatic conditions can influence the presence of noise in the recorded data, so processing
is recommended before using them in such a model.
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Depending on the model, we have the following conclusions:

• Grey Box Model: The analogy of Ohm’s Law was applied to determine some charac-
teristic parameters of the study area, such as hydraulic conductivity per tree (1/R) and
water storage (C). The model used, as an input variable, the latent heat (LE) registered
by the measurement tower, and by using the MATLAB software, the development of
the equations in state space was obtained that would indicate the respective values
for the resistances and capacitances existing in the model. Carrying out the respective
runs for each month, it was not possible to obtain physical values that represented the
behavior of the species, the system required more information to achieve the connec-
tion between the flows recorded by the tower and the conditions of the selected species.
Nine behaviors were found and the one with the fewest variations was selected, and
then validated with the days 11 May and 2 June. The model improved its ability to
predict behavior, but the coefficient R2 obtained was still low (0.37 and 0.43).

• Black Box Model: A black box model was applied and developed through the appli-
cation of neural networks using the Deep Learning package of MATLAB software.
The use of neural networks for the prediction of energy flows (LE, H, FC) was highly
effective, obtaining R2 values greater than 0.86 in the runs carried out in January and
September 2018.

As mangrove areas are lost to the development of poorly planned economic activities,
the efficiency with which mangrove forests manage to fix and store one of the gases that
contribute to the greenhouse effect begins to reduce. The modification of the hydroperiod in
these areas could accelerate the process of emission of gases such as methane, considering
that the areas are exposed to the open sky [66]. From another perspective, maintaining
and recovering these mangrove areas would represent direct support for the reduction of
emissions in these areas, the main contribution of the research being the reinforcement
of the process of obtaining data that allows showing the economic and environmental
contribution of these areas for the generation and modification of government policies for
the protection and rehabilitation of these ecosystems.
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