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Abstract: This work presents a remote sensing application to estimate the leaf area index (LAI) in two
rice (Oryza sativa L.) varieties (IDIAP 52-05 and IDIAP FL 137-11), as a proxy for crop performance. In-
field, homogeneous spectroradiometric measurements (350–1050 nm) were carried in two campaigns
(June–November 2017 and January–March 2018), on a private farm, TESKO, located in Juan Hombrón,
Coclé Province, Panama. The spectral fingerprint of IDIAP 52-05 plants was collected in four dates
(47, 67, 82 and 116 days after sowing), according to known phenological stages of rice plant growth.
Moreover, true LAI or green leaf area was measured from representative plants and compared to
LAI calculated from normalized PlanetScope multi-spectral satellite images (selected according to
dates close to the in-field collection). Two distinct estimation models were used to establish the
relationships of measured LAI and two vegetational spectral indices (NDVI and MTVI2). The results
show that the MTVI2 based model has a slightly higher predictive ability of true LAI (R2 = 0.92,
RMSE = 2.20), than the NDVI model. Furthermore, the satellite images collected were corrected and
satellite LAI was contrasted with true LAI, achieving in average 18% for Model 2 for MTVI2, with
the NDVI (Model 1) corrected model having a smaller error around 13%. This work provides an
important advance in precision agriculture, specifically in the monitoring of total crop growth via
LAI for rice crops in the Republic of Panama.

Keywords: rice crops; phenology; crop performance; leaf area index; Panama; reflectance;
remote sensing

1. Introduction

Rice (Oryza sativa L.) is an essential grain in the primary diet of many people world-
wide, especially for inhabitants of developing countries [1]. About 23% of the calories
consumed by the world’s population come from rice [2]. Rice is mostly produced and
consumed within the Asian continent. This continent is also responsible for more than 90%
of its world production [2]. In Panama, rice was declared an essential crop for food security,
through Law 17 of 22 February 2018 , as this is the main product of the basic food basket in
the country (Official Gazette No. 28471-B).
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In general, information technology, specially the use of machine learning and big data
in agriculture allows the acquisition of quantitative information on crops. It often focuses in
aspects such as location, extension, spatial distribution, monitoring of plants phenological,
health, nutritional and water stress status [3,4]. Only with reliable and timely information
is it possible to make good crop planning and management decisions. Decisions that at the
same time ensure the competitiveness and sustainability of the agricultural sector [5].

Due to its role in food security, rice cultivation, monitoring, and production are in
constant technological improvement. Methodologies used for its monitoring often involves
remote sensing techniques. For instance, satellite images are used to obtain spectral
signatures of vegetation covers [6,7] and reflectance measurements to calculate spectral
indices. More importantly, estimating the relationship of these indices against real in-
field measured agronomic and biophysical variables is of great interest to the research
community [8,9].

A crop’s unique spectral signature is fundamental for recognizing vegetation covers. It
can be easily described as how a given land cover responds at different wavelengths. Hence,
for the realization of crop studies with remote sensing techniques, it is essential to start
by obtaining spectral signatures [10]. Often reflectance measurements are used to develop
spectral indices, for example: the StandardIzed Difference Vegetation Index (NDVI) [11]; the
Soil-Adjusted Vegetation Index (SAVI) [12]; and the Modified Triangular Vegetation Index
2 (MTVI2) [13]. These vegetation spectral indices are quantitative measures calculated
from combinations of several spectral bands. They are used to study or indicate vegetation
vigor and can be used when studying plots and their changes over time. More importantly,
they are more informative and show better sensitivity than individual bands for green
vegetation detection [14]. Some vegetation indices can be related to leaf area, biomass,
nitrogen content, chlorophyll content, and health status. In this sense, some studies seek
to demonstrate and model these relationships to describe crop productivity. Therefore,
these vegetation spectral indices are also used to evaluate the correlation level of these with
particular crop properties [15–21].

Regarding vegetation indices, the works of Liang et al. [18] and Cao et al. [15] are
relevant. In both studies, 443 vegetation indices were evaluated for different characteristics
and crops. While Liang et al. [18] uses the leaf area index (LAI) for various crops (especially
corn, oats, and potatoes) as a feature to be evaluated, Cao et al. [15] concentrates on the ni-
trogen content in rice leaves. Other relevant studies are Kross et al. [17] for maize/soybeans
and Xie et al. [20] for wheat. It is important to note that the study by Kross et al. [17], also
relates the amount of biomass to vegetation indices.

The Leaf Area Index, or LAI, is the ratio between the area of the green leaves and the
area of soil. The LAI indicates productivity and photosynthetic capacity [13,22–24]. It is
also used to establish growth rates relative to the rate of change concerning incorporating
some nutrients [25]. Likewise, other parameters related to LAI were measured, such as
the foliar area ratio, which relates the leaf area and the dry mass generated, and the net
assimilation rate that evaluates photosynthetic efficiency accounting for dry mass, leaf area,
and time [25].

One of the most commonly employed methods for LAI calculation, is the optical
method. It calculates LAI as the horizontal shadow area that is projected under a horizontal
sheet [26]. Examples of this method are observed in commercial equipment such as the
AccuPAR ceptometer and the LAI-2000 Licor. This method has the disadvantage of
underestimation due to a saturation phenomenon. A problem can arise with ceptometers
at the measurement point [27]. An example of its use is the work of Mora et al. [28], who
developed a model to estimate the LAI of the tropical rainforest (sensu Holdridge) from
spectral data from satellite images, which were validated using field measurements with
the AccuPAR LP-80 ceptometer.

For the prediction of LAI in rice crops, using multispectral data, it has been suggested
to use up to 15 spectral bands [29]. Information from these bands can be applied to
inspection, control, and surveillance of extensive rice crops. For example, He et al. [30]
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studied the effect of panicle presence on LAI estimation for monitoring rice cultivation at
the harvest stage.

This article analyzes rice cultivation’s spectral signature to obtain the bands that best
correlate with the LAI and uses two distinct models for its prediction. The purpose of this
work is to contribute to knowledge regarding the use of spectral data from satellite images
for the estimation of biophysical variables through remote sensing; specifically, it seeks to
establish the basis for the development of models that incorporate vegetation indices for
the estimation of the leaf area index, which is applied in the description of the state and
productivity of rice cultivation, using PlanetScope images.

2. Materials and Methods
2.1. Characterization of the Study Area

The study site is located on the TESKO S.A. farm, in Juan Hombrónn, Coclé Province,
at coordinates 8◦19′ N, 80◦13′ W, approximately 150 km west of Panama City (see Figure 1
for detailed location).

Figure 1. Study site location relative to the Panama City, Panama.

The farm is located in Juan Hombrón, district of Antón, province of Coclé. This location
is part of the Dry Arc region (the Central Pacific Hydrologic Region of Panama). This region
has an average precipitation of 1400 mm per year, in which dry months precipitation
could be as low 10 mm/month and in wetmonths up to 500 mm/month [31]. According
to Köppen, this region is considered to have a dry-humid tropical climate or tropical
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Savannah climate. Juan Hombrón’s has an economy based on agricultural activities, with
agri-businesses focusing on crops such as: Sugar cane, coffee, corn, rice, beans. In addition,
fishing, shrimp farming and livestock are grown in this area.

Cultivar Selection

Originally, IDIAP 52-05 variety was chosen for all experiments in this study due to
having a good milling performance and a superior industrial quality. IDIAP 52-05 fulfills
its life cycle between 116–124 days after sowing. Plants reach maximum heights of between
85–110 cm and are adapted to both irrigation and rain-fed conditions. More importantly, it
is known to be resistant to Pyricularia sp. among other pathogens [32].

Therefore, the base unit of analysis for this study were crops of the rice variety IDIAP
52-05 grown on the TESKO S.A. farm. However, it should be stated that management
decisions made by the owners of the farm and therefore out out of our hands, impacted
the course of this research project and forced the group to use IDIAP 137-11, a similar rice
variety to IDIAP 52-05, in order to validate the results. The IDIAP FL 137-11 variety has
an early-intermediate vegetative cycle, with 107 to 129 days from sowing under rainfed
conditions and 108 to 114 days under irrigated conditions. It has a height that oscillates
between 83 and 114 cm [33]. This is of important to establish, since IDIAP FL 137-11 crop
with 77 days after sowing, was used for validation of the models.

2.2. Sampling Dates

Rice crops are often divided by the stage in their growth phase. In literature, rice phe-
nology is divided into three main phenological phases (as described in [33,34]), as follows:

• Phase #1: vegetative, characterized by starting with germination and concluding with
panicle initiation (days 1 to 55 after sowing).

• Phase #2: reproductive, characterized by panicle initiation and concluding in flowering
(days 55 to 105 after sowing).

• Phase #3: maturity or ripening, which is characterized by grain filling and extending
until maturity (days 105 to 120 after sowing).

As the rice variety under study develops for about 4 months. The sampling dates, were
observed to line up with phenological stages, as follows: (1) vegetative, with a sampling
date 47 days after sowing, (2) reproductive with with two sampling dates 67 and 82 days
after sowing and (3) maturity with a sampling date 116 days after sowing. This linking
is necessary in order to explain their evolution according to management operations for
rice crops.

It should be noted that spectral signature at the beginning of the crop on the early
vegetative stage (13 days after sowing) were collected. However, as this spectral sig-
natures suffer from suffering from having a mayor reflectance component coming from
the soil (due to small leaf area). Measurements of this type are described in length in
Sanchez-Galan et al. [35,36]).

2.3. In-Field Spectral Signature Collection

For the capture of spectral signature data, preferential sampling was chosen. That is,
taking several replicas of the spectral signature of the coverage class previously identified
at homogeneous points, which characterize and represent that class. A spectroradiometer
(GER 1500 from Spectra Vista Corporation) covering a range of 350–1050 nm was used,
with a field of view of 8◦. Before each signature shot, a reference measurement is captured
on a Spectralon (a calibrated white semi-Lambertian surface). Figure 2 visually represents
the team acquiring a in-field with portable spectroradiometer.
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Figure 2. In-field spectral Signature collection.

Spectroradiometric measurements were made between June and September 2017 and
between January and April 2018. All measurements were acquired in an specific period of
the day, either between 10:00 a.m. and 11:30 a.m. or between 1:00 p.m. and 2:30 p.m. This
ensured controlled reflactance variability and signal quality. In all cases, a blank (reference
measurement), were taken between samples rapidly as the sunlight and clarity conditions
changed appreciably. Each signature measurement was georeferenced using a Garmin eTrex
GPS. Finally, the data were downloaded as text files with “.asc” extension and saved in
specific folders. File names were saved with a code indicating the rice variety and the
measurement date.

2.4. Transformation of the On-Site Spectral Signature to a Satellite Spectral Signature

Since the equipment manufacturer adhered to the ISO 80000 standard https://www.
iso.org/obp/ui/#iso:std:iso:80000:-7:ed-2:v1:en:en%00 (Last accessed on: 2 May 2023) and
provided the measurement in units of W × cm−2 × nm−1 × sr−1 × 10−10, it was necessary
to make a transformation of spectral signature given by the spectroradiometer to the ones
given by the remote sensor from PlanetScope, operated by Planet Labs [37]. The solar
irradiance was analyzed after a transformation to W ×m−2 for each band used, using the
Equations (1) and (2):

SIband =
n=m

∑
n=0

λn · BR ·Ω ·
(

10−6
)

(1)

TIband =
n=m

∑
n=0

λn · TR ·Ω ·
(

10−6
)

, (2)

where SI is solar irradiance, BR is blank radiance TI is target irradiance, and TR is target
radiance. λn corresponds to the wavelengths in nm and m is the number of wavelengths
that the spectroradiometer has within each of the PlanetScope satellite bands (ρ = {blue,
green, red, and infrared}). Ω corresponds to the solid angle in steradians (sr), which is
related to the field of view by the Equation (3):

Ω = 2π
(

1− cos
α

2

)
(3)

For the particular case the in-field equipment had an α = 8◦, corresponding to a solid
angle of Ω = 0.0153 steradians. Finally, the 10−6 factor results from the conversion cm2 to
m2. Thus, the reflectance of a band ρ is obtained by the relationship shown in Equation (4):

ρ band =
TI
SI

(4)

https://www.iso.org/obp/ui/#iso:std:iso:80000:-7:ed-2:v1:en:en%00
https://www.iso.org/obp/ui/#iso:std:iso:80000:-7:ed-2:v1:en:en%00


AgriEngineering 2023, 5 970

Moreover, on-site spectral signals were re-calculated to take into account the Relative
Spectral Response (RSR) filters, that is, the specific Planetscope satellite relative sensitivity
to radiance at various parts of the electromagnetic spectrum. Filters were obtained directly
from Planetscope website for the Dove Classic Satellite.

As the satellite images used in this study were acquired within the 2017–2018 period.
Our images belong to the “Dove classic” instrument. Therefore, the sensitivity files were be
obtained from a PlanetScope forum https://support.planet.com/hc/en-us/articles/360014
290293-Do-you-provide-Relative-Spectral-Response-Curves-RSRs-for-your-satellites- (Last
accessed on: 2 May 2023), with the code 0fxx/Dove-Classic_10xx. The RSRs have a value
between 0 to 1 and are unit-less, since they are described relative to the peak response; for
out of this case, they are shown in Figure 3.

Equation (5), describes the relationship between the reflectance from the spectrora-
diometer and the reflectance for each the wavelength of each sensor, including the RSR filter.

Rband =
∑(Ri × RSRi)

∑ RSRi
(5)

where Rband, is the reflectance at a range of wavelength (e.g., red band). Ri, is the reflectance
at a specific wavelength, and RSRi, it the relative response value at the specific wavelength.

This equation have been successfully used in Melillo et al. [38], Trischenko et al. [39,40]
and more importantly in Agapiou et al. for the same GER 1500 Spectra Vista Corp. instru-
ment as used for our measurements [41].

Figure 3. Relative Response filters for ρband of PlanetScope sensor.

2.5. Measurements of Green Leaf Area

Figure 4 shows the process of collection of spectral signatures. In addition, the sam-
pling area selected for True LAI determination. Representative points of the spectral
signature of the crop were selected within the plot. Five random samples were cut in
triplicate at days 47, 67, 82, 97 and 116; and collected in an area of 25 × 25 cm2 for the
complete cultivation cycle (about 4 months). As demonstrated in Figure 4A, the sampling
process consisted of cutting the plant’s entire aerial sample with scissors and placing it in a
closed bag. As shown in Figure 4B the sampling area was separated with a wooden stick
frames and threads, for consistency and repeatability.

https://support.planet.com/hc/en-us/articles/360014290293-Do-you-provide-Relative-Spectral-Response-Curves-RSRs-for-your-satellites-
https://support.planet.com/hc/en-us/articles/360014290293-Do-you-provide-Relative-Spectral-Response-Curves-RSRs-for-your-satellites-
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A B

Figure 4. In-field Collection Procedures of Green Leaf Area. Sampling Process (A) and Sampling
Area (B).

Samples collected over the experimental area were taken to the laboratory to estimate
the green leaf area (dried leaves were not included for the calculation of the area). For this
study, this measurement is considered as true LAI. Then, each rice leaf was mounted on a
flat white cardboard surface, taking into consideration a proportional separation between
samples. A calibrated ruler was placed on the cardboard and used as a standard to have
the profile object of known dimensions used later for comparison with the leaves. Finally,
the mounted leaves were photographed from the top, and the image was saved accordingly
for later estimation.

The photographs were analyzed with the ImageJ program version 1.51t by selecting a
mask to obtain the borders of the leaf finally the shaded area corresponding to the leaf area
was calculated [42]. This procedure was repeated twice for selected crop dates. Figure 5,
provides a visual explanation of the measurement procedure.

A B C

Figure 5. True LAI Determination via the ImageJ software. Leafs were arranged in the controlled
background surface (A), then the reference and the green leafs were selected and highlighted area
confirmed in the software interface (B). Finally, the green area was calculated (C).

2.6. Modeling the Relationship between In-Situ Reflectance and LAI

Regarding multispectral satellite imagery, PlanetScope images were selected, as pre-
viously agreed with the funding agency. Selected images had a 3 × 3 m resolution.
The satellite bands used in this study were: ρblue = 455–515 nm, ρgreen = 500–590 nm,
ρred = 590–670 nm and ρNIR = 780–860 nm., respectively. Using the image search engine of
Planet Labs, a private company that processes and distributes Satellite Images PlanetScope,
images were identified, selected, and downloaded according to the georeferenced points.
Each image was actually a folder with three images. Images that in their name include the
suffix “_SR” have radiometric and atmospheric corrections.

These georeferenced satellite images needed to match two criteria: (1) to be in dates
as close as possible so that they corresponded to the age of rice cultivation (in days) and
(2) those with the lowest percentage of cloud cover. If the captured image did not coincide
with the date of measurement in the field or had a significant cloud percentage (as is typical
for Panama), images of the nearest day in the same week for the age of the crop were
downloaded. These caused a partial time discrepancy between field measurements and
satellite acquisition date.

Regarding the images’ quality, they all have atmospheric corrections to obtain the ground-
level reflectance (surface reflectance). All images used had two predetermined corrections
made by the supplier: atmospheric correction algorithm: “6Sv2.1” and aerosol model: “continental”.
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2.7. Spectral Estimation of LAI

Two models were used to understand the relationship between true LAI and in-situ
reflectance during the vegetative and reproductive phases. Model #1 is directly related to
NDVI and Model #2 with the MTVI2. Both, Models #1 and Model #2, were first estimated us-
ing Equations (6)–(8), found in literature. Model 1 was first suggested by Nguyen et al. [43]
and Model 2 by Haboundane et al. [13], but later estimated to fit the acquired data.

Model # 1

LAI = (3.49 ·NDVI)− 0.17 (6)

where

NDVI =
(ρ NIR − ρ RED)

(ρ NIR + ρ RED)
(7)

Model # 2

MTVI2 =
1.5[1.2(ρ NIR−ρ GREEN)−2.5(ρ RED−ρ green)]√

(2ρ NIR+1)2−(6ρ NIR− 5√ρ RED)−0.5
(8)

Model validation was made by adding, for all points considered, the percentual errors,
by using Equation (9):

| true value− calculated value
true value

| × 100 (%) (9)

where the true value is represented by the True LAI and the calculated value is the one
estimated by each model.

2.8. Calibration Adjustment to PlanetScope Satellite Imagery

Additional radiometric calibration settings were employed relative to initial correc-
tions and referenced to the irradiance and reflectance measured in the field (as a function
of the day and time). In other words, the measured in-field spectra were the best approxi-
mation of the spectral signature with the slightest error due to the intervention of cloud
reflection or infrared re-absorption. The correction factor is the ratio of the field reflectance
to the satellite reflectance using the band ranges delimited by the PlanetScope sensors.

The correction factor was obtained with the data of four different days from Juan
Hombrón plot:

1. 25 January 2018 (field and satellite measurement).
2. 8 February 2018 (field and satellite measurement).
3. 21 February 2018 (only field measurement, satellite measurement was acquired on

22 February 2018).
4. 5 March 2018 (field and satellite measurement)

Figure 6 shows the satellite image from Juan Hombrón plot from which the correction
factor was obtained.
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A B

C D

Figure 6. Plots from which correction factor were estimated by date. 25 January 2018 (A). 8 February
2018 (B), 22 February 2018 (C) and 5 March 2018 (D).

For all four days the correction factor was estimated as the ratio given in Equation (10):

Correction factor =
field reflectance

satellite reflectance
(10)

A correction factor regression with solar irradiance W
m2 per band was performed to

determine the change in correction factor due to changes in solar irradiance. Finally,
reflectance is calculated using Equation (11):

Corrected reflectance = satellite reflectance× correction factor (11)

2.9. Software

All satellite imagery was processed with the QGIS 3.10 software Package [44]. The
R program was used for the statistical analysis of data [45], including spectral band in-
tegration and figure creation. Statistical significance was established with a cut-off of
0.05 (p < 0.05). Second order non-linear polynomial regression needed for calibration be-
tweeen in-field and satellite images were calculated using the nls https://cran.r-project.
org/web/packages/nls2/index.html (Last accessed on: 2 May 2023) package in R. The
Pseudo R2 estimates for the non-linear regression [46] were calculated using the aomisc
(https://rdrr.io/github/OnofriAndreaPG/aomisc/ (Last accessed on: 2 May 2023) package
from R stastical software.

3. Results
3.1. Analysis of Collected Spectral Signatures

Figure 7 shows the spectral signatures of the IDIAP 52-05 variety for four sampling
dates. Figure 7A provides a representation of vegetative phase on day 47 after sowing.
Figure 7B,C represents the reproductive phase on days 67 and 82 after sowing, respec-
tively. Figure 7D, shows the maturity phase, specifically on day 116 after sowing. This
figure shows the evolution of the spectral signatures over time and, more importantly,
its spectral separability. One can notice that the first and last phases have a lower over-
all reflectance, contrasting with the reproductive having higher reflectance, with notable
reflectance attributed to the plant’s flowering.

https://cran.r-project.org/web/packages/nls2/index.html
https://cran.r-project.org/web/packages/nls2/index.html
https://rdrr.io/github/OnofriAndreaPG/aomisc/
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A B

C D

Figure 7. Average spectral signatures for the rice variety IDIAP 52-05. Representative signature
for 47 days after sowing, corresponding to 24 May 2017 (A). Representative signature with 67 days
after sowing, corresponding to 13 June 2017 (B). Representative signatures for 82 days after sowing,
corresponding to 28 June 2017 (C). Finally, Signatures for 116 days after sowing, corresponding to
2 August 2017 (D). The black line represents the average, and the gray shading defines the range of
±1 standard deviation.

3.2. True LAI Estimation

As it was previously described in Section 2.5, true LAI was calculated via image
analysis of rice plant leaves. The leaves were cut out, and then the ImageJ program was
used to count the green area of the leaves in the photograph scaled with an object of known
dimension. Table 1, shows the estimated average true LAI for the IDIAP 52-05 variety at
different days after sowing. The Mean Absolute Deviation (MAD) was calculated to assess
the dispersion values in LAI measurements for each sowing date. For the calculation of the
MAD Equation (12), was used:

MAD =
∑
∣∣xij − x̄j

∣∣
nj

(12)

where in xij, i represents each one of the measurements of j days after sowing, x̄j is the
average for j days after sowing, and n is the total number of samples for the date.

As for the interpretation this value, a low MAD value indicates that the data points
are closely together; while a high MAD value indicates their dispersion.

Table 1. True LAI (Green leaf area) estimates for IDIAP 52-05 variety.

Phase Days after Sowing Measured LAI Mean Absolute Deviation for LAI

Vegetative 47 3.48, 4.20, 6.36 1.12

Reproductive 67 5.71, 6.45, 9.33 1.44
82 5.71, 6.20, 9.36 1.51

Maturity 97 8.25, 9.54, 9.94 0.66
116 4.00, 4.96, 5.05 0.45

Table 1 suggests that there is more dispersion (higher MAD values) in LAI measure-
ments in the reproductive phase (for 67 and 82 days after sowing) with 1.44 and 1.51,
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respectively; than in the vegetative (for 47 days after sowing) with 1.12 and ripening phases
(for 97 and 116 days after sowing) with 0.66 and 0.45, respectively.

In general, these variations in LAI measurements for the same collection day can
be attributed to the nature of the experiment. As the experiments were carried out on a
commercial farm, with particular soil and terrain characteristics. Basically, the terrain was
not a flat and well-maintained crop surface, but an even surface where muddy puddles
were formed, which led to variations in plant growth. Moreover, as in any commercial
farm, the seed planting was performed via a broadcast seeder; therefore, the location of
plants is not equally spaced, specially when compared to traditional experimental plots
where row planting and drop spreaders/seeders are often used. Finally, it is known that the
growth stages for IDIAP 52-05 work as a gradient with some plants changing phases more
rapidly than others [33]. These growth variations are reflected in our LAI measurements.

3.3. Model for In-Field Spectral Estimation of LAI

Equations described in Section 2.7 were used to understand the resulting relationship
between in-situ reflectance and True LAI in the vegetative and reproductive phases, with
n = 52 points averaged into 4 points representing dates after sowing (47, 67, 82 and 97).
Model #1, for NDVI, resulted in a significant linear model (p < 0.05) with a multiple R-
squared of 0.92 and an adjusted R-squared of 0.89, and a RMSE of 2.22. The resulting
model can be expressed as LAI = 8.57 × NDVI. As for Model #2, for MTVI2, resulted in a
statistically significant linear model (p < 0.05) with a multiple R-squared of 0.92 and an
adjusted R-squared of 0.89, and a RMSE of 2.20. The resulting model can be expressed as
LAI = 10.45 ×MTVI2. These results show that the MTVI2 base model has a slightly higher
predictive ability of LAI, with a slightly smaller error than the one using NDVI.

3.4. Relative Correction of the Satellite Image

Figure 8 shows, the 2nd order corrections for each band. Table 2 presents the ratio of
change between the correction factor against irradiance by satellite band measured with
the field spectroradiometer. Table 3 shows correction factor regression with solar irradiance
W
m2 per band was performed to determine the change in correction factor due to changes in
solar irradiance.

Correction reflectance applied according to Equation (11) earlier for the irradiance of
8 February 2018, suggests a correction of 0.61911 for the Blue Band. While corrections of
0.6121, 0.4058, and 1.355 must be applied to the Green, Red, and NIR Bands, respectively.

Each model was applied on a PlanetScope satellite image to obtain the LAI maps
(see Figure 9). The image is from 8 February 2018 and the object of observation was the
crop IDIAP FL 137-11.

Table 2. Equations used to calculate the correction factor for the bands used.

Band Final Model Residual
Standard Error Signifcance Pseudo R2

Blue Y = 0.0009× x2− 0.2127 × x + 11.92 0.1005 p < 0.001 0.53
Green Y = 0.0004× x2− 0.1568 × x + 15.09 0.1739 p < 0.001 0.36
Red Y = 0.0007× x2− 0.2506 × x + 22.46 0.1485 p < 0.001 0.68
NIR Y = −0.0004× x2 + 0.1288 × x − 9.0127 0.1528 p < 0.05 0.41
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Figure 8. Visual representation of correction factor for the bands.

Table 3. Estimated spectral corrections made using the irradiance for 8 February 2018, by bands.

Irradiance
Sample Blue Band Green Band Red Band NIR Band

1 106.137 177.2489 169.5444 161.3283
2 106.1878 177.241 169.2943 158.1286
3 105.7683 176.4078 168.4679 159.3418
4 104.2549 173.8378 166.0449 159.3632
5 107.4158 179.0375 170.9401 161.7234
6 105.515 175.912 167.9908 160.3049
7 104.5517 174.196 166.2761 158.6433

Average 105.6901 176.2687 168.3655 159.8334

We worked with the exact polygon measured in the field. For this purpose, the
coordinates of the points measured in the field were used. The points of the edges and
ends were taken in order to form a polygon. The coordinates of the polygon are 4 points as
listed below:

1. 920,757.68 N and 584,436.09 E
2. 920,718.36 N and 584,545.32 E
3. 920,822.46 N and 584,602.76 E
4. 920,893.83 N and 584,531.64 E
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Figure 9. Estimated LAI map from PlanetScope images measured on 8 February 2018. LAI map
estimated using model 1 with NDVI (A). LAI map estimated using model 2 with MTVI2 (B).

3.5. Validating the Satellite Image Correction

Tables 4 and 5 shows the LAI prediction error for Model #1 and Model #2, respectively.
For both models the estimated LAI with the PlanetScope bands against the true LAI (obtained
by cutting leaves) are compared for both models. Estimation from Two LAI measurements
was employed for each model.

Table 4. Model #1 Validation and Error Calculation.

Model Calculated NDVI Measured LAI Estimated LAI Percentual Error (%)

1 0.9189 7.71 8.03 4.15
0.9164 6.51 8.00 22.09

Table 5. Model #2 Validation and Error Calculation.

Model Calculated MTVI2 Measured LAI Estimated LAI Percentual Error (%)

2 0.8057 7.71 8.41 9.03
0.8009 6.51 8.35 28.26

Model #1’s average percentual error is 13.52%; for Model #2 the error amounted to
18.65%. Both cases required a detailed analysis of the relative correction of the satellite
image. This analysis was made to understand further the model and how this error could
be reduced.

4. Discussion and Conclusions

Visualizing spectral signatures serves to identify bands that can be used to discriminate
between classes. Yang and Chen [47] mention that in the vegetative phase, the signatures
are affected by: the change in leaf area, the growth of the leaves in number and size,
and the soil discovered; the smaller the leaf area, the greater the interference of the soil
discovered in the firm. The spectral response of rice cover crops grown within a few days
after sowing showed a constant variation in the reflectance range along the signature. This
spectral response does not reach the shape of a typical plant toppings signature. Spectral
responses at ages 47, 67, 82, and 116 days after sowing show the typical distinctive features
of vegetation: low reflectance in the visible light range, a noticeable peak in the green
around 570 nm, and high near-infrared reflectivity [10].

With the plant’s growth, an average increase in reflectivity is observed in the near-
infrared, but the variability in this band is high, suggesting difficulty in detectability. The



AgriEngineering 2023, 5 978

variation in the near-infrared range is likely due to differences in the water content in the
plant’s leaves [10].

The reflectance was higher at 67–82 days after sowing (which comprises 2 phases, the
final days of the reproductive phase and the beginning of the ripening phase) compared to
the other sowing dates, which coincides with the results of [48], in tests performed on the
Kongyu rice variety in China. The presence of the panicle also increases reflectance in the
near-infrared range, which is consistent with the results of He et al. [30] for the japonica
rice variety. At 116 days after sowing (last stages of cultivation), a decay of reflectance is
observed, possibly due to decreased leaf water content and the loss of green leaf area.

Relative to the LAI, each true LAI value resulted from averaging three measures of
LAI for each planting age. In the measurements of true LAI of the variety IDIAP 52-05 it is
observed that the samples of an area of 25 × 25 cm2 present high variability especially at
the older age of the crop.

As for the treatment of the images, these are acquired with a correction that estimates
the reflectance at the level of the Earth’s surface [35]; which consists of the application of
the standard atmospheric correction that is made with the algorithm 6S version 2.1, with
continental aerosol content model and optical thickness data provided by MODIS satellite
images [49]. The atmospheric correction methodology applied to PlanetScope products has
some limitations such as needing overlap with areas measured with the MODIS satellite and
the lack of correction in the presence of thin clouds or mist [49]. The additional correction
factor brings the measurement of PlanetScope’s corrected product at a ground level closer
to the direct reflectivity measurement with the spectroradiometer. The correction factor
is not static and varies between bands as it can be seen in Table 3. When comparing the
Measured LAI for the verification points shown in Tables 4 and 5 to the average spectral
signature of plants with the same days after sowing (with in-field measurements and those
shown in Table 1) it seems plausible and very well in range with a plant with 77 days with
7.71 and 6.51, respectively, thus a verification of the procedure.

This work applied individual band correction factors to the satellite images. For all
bands, a quadratic model was fitted. The correction factor tended to decrease to a minimum
of irradiance defined for each band with values of 110 (blue), 185 (green), and 175 (red),
and then increase. For the case of the NIR band, the behavior of the correction factor
was precisely the opposite, showing an increase to a maximum irradiance of 160. Then a
decrease in IR band. Table 2 shows the correction equations used for each band and the
irradiance range applicable to the theme represented.

The validation test performed using two measurements of true LAI of the IDIAP FL
137-11 crop 77 days after sowing determined that model 1 presented an error rate of 13.52%
comparing the estimated and true LAI values. Model 2 with MTVI2 obtained a predictive
approximation with a 18.65% error. In general, literature shows that MTVI2 has a higher
correlation rate with LAI for corn, soybeans, and wheat and less sensitivity to chlorophyll
variations [13], such as rice in the ripening phases.

More importantly, the average magnitude of the errors for both Model #1 and Model
#2 is around 15%, it can be attributed to many factors, but it can be accounted to the uneven
distribution of LAI values. In fact, the maps shown on Figure 9 show that LAI estimates on
the images form big homogeneous groups for Model #1 and small heterogeneous groups
for Model #2. These notable distribution differences might be due to irregularities at
the ground level, a byproduct of the experiment being performed on a commercial farm
instead of an experimental plot. In addition, errors of estimated LAI around 20% are most
likely due to other limitations of this study, such as the inevitable change in rice varieties,
differences in the soil, and the seasonal difference between collection and validation dates.
That are mostly noted by points having the same LAI, but changing significantly in the
in-field spectral signatures in the NIR bands. In addition, different LAI values for similar
NIR band values.

Despite limitations, and the fact that the resulting fitted models (and their results
here presented), are only valid for PlanetScope satellite images, since they were adjusted to
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the bandwidths and sensitivity of PlanetScope Dove classic equipment. This work provides
an important advance in precision agriculture, specifically in monitoring LAI for rice
crops. The LAI is a physical parameter closely related to productivity and key to applying
the various models employed, including the one related to MTVI2, allowing predictions
consistent with the real LAI using PlanetScope satellite imagery.
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