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Key Points

e A countrywide process-based hydrological model was built for Panama
using the Soil and Water Assessment Tool.

¢ Precipitation interpolation was used as an avenue for significant model
improvement in the absence of global calibration.

e The resulting model will provide baseline precipitation and hydrology lay-
ers for an integrated sustainability platform.
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Abstract

Water availability and extremes in river discharge associated with floods and
droughts are critical determinants of human welfare and ecological function.
Modeling the effects of climate scenarios and other social and environmental
changes on waterways is thus a key component of effective planning and risk
mitigation. Yet, the calibration of multiple-basin models, such as for a national
planning framework, can be difficult due to limitations on quality and spatial
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coverage of available hydrological observations. In this manuscript, we build a
process-based whole-country hydrological model for Panama using the Soil and
Water Assessment Tool (SWAT). We also extend SWAT by deriving a precip-
itation interpolation model that incorporates regional climatic variability and
spatial autocorrelation of precipitation, and we validate the model using data
from 35 hydrological stations. Without calibration, the default application of
SWAT reasonably predicted spatiotemporal variability in mean monthly dis-
charge (NSE=0.70), but largely failed to predict variability (NSE=0.26) and
maxima (NSE=0.22). However, with our relatively simply precipitation in-
terpolation sub-model, we were able to strengthen predictions of discharge
(NSE=0.87), but also able to more than double predictive ability for variance
(NSE=0.62) and maxima (NSE=0.53). This moderate modification may allow
process-based hydrological models such as SWAT to be much more broadly ap-
plied; crucially, even across regions with scarce hydrological data. The resulting
precipitation and hydrology layers provide important baseline information for
Panama.

1. Introduction

Changes in the hydrological cycle brought about by climate change and intensifi-
cation of human activity pose significant risks to social and ecological well-being.
These range from direct reductions in the availability of potable water or agricul-
tural irrigation (FAO 2018, p. 31) to extreme events such as floods and droughts,
which are anticipated to generally increase in frequency and magnitude with the
changing climate (e.g., Hirabayashi et al. 2013; Cook et al. 2015). Indeed, ac-
cess to clean water and resilience to climate-induced risks comprise two of the 17
UN Sustainable Development Goals (United Nations 2015). Changing patterns
of precipitation and hydrology will also have ecological consequences, strongly
influencing local vegetation and potentially affecting biodiversity (e.g., distance
to water and precipitation were found to be two of the best predictors of species
distributions, Bradie & Leung 2017). The capacity to predict hydrological pat-
terns will be crucial for effective risk mitigation and building systemic resilience.
Moreover, given the spatial heterogeneity in these dynamics, identifying critical
regions at high risk for reductions in water availability and increases in extreme
events must be an integral part of planning and management strategy. The need
for this type of analysis is even more pronounced in the Global South, where
the threat of climate change is compounded by economic and infrastructural
inequality (e.g., Roberts 2010, Chapagain et al. 2020).

One method of carrying out such analysis is by using a spatially distributed,
process-based hydrological model, such as the Soil and Water Assessment Tool
(SWAT, Arnold et al. 1998). SWAT explicitly models spatial variation in the
study area by splitting each watershed into units of non-branching stream seg-
ments and their drainage area, henceforth referred to as ‘subbasins’; and further
splitting each subbasin into a set of Hydrological Response Units or HRUs which
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represent a particular combination of slope, land use, land management, and
soil type that occurs within the subbasin.

In this manuscript, we use SWAT to build a countrywide hydrological model of
Panama. Such a model, if it works, would be highly relevant for several reasons.
Firstly, a national framework for water resource management already exists in
the form of the Plan Nacional de Seguridad Hidrica or National Water Security
Plan (Comité de Alto Nivel de Seguridad Hidrica, 2016), which predicts a rise in
water insecurity as human consumption reaches 50% of freshwater availability
in the country by 2050. Freshwater is also a key resource for the Panama Canal
system, which requires 52 million gallons per ship transit. The Canal Authority
came close to having to impose draft restrictions due to lack of water during the
wet season in 2015, an El Nino year (Autoridad del Canal de Panam4, 2015).
The canal is uniquely important not only to Panama’s economy, representing
5.4% of national GDP in 2014 with $2.6 billion in revenue (OECD 2017), but
also as a node in the global shipping trade. About 50% of the country’s electrical
capacity is accounted for by hydropower (Secretaria de Energia, 2012). Along
with droughts like the one in 2015, floods and associated landslides are also
problems faced by the country (e.g., Wohl and Ogden, 2013). Beyond human
impacts, Panama is also at the center of one of the world’s most biodiverse areas
(Myers et al. 2000), with its enormously diverse tropical forests and aquatic
ecosystems reliant on the health of its waterways.

It is standard procedure to calibrate a predictive model before validating it,
and the utility of SWAT in simulating single watersheds with model param-
eters calibrated to local conditions, at least at the monthly timestep, is well
established (e.g., Perez-Valdivia et al., 2017). The calibration of SWAT mod-
els is an especially complex issue due to factors such as the large number of
potentially sensitive parameters in the model, the variety of fitting algorithms
available (e.g., SUFI-2, GLUE, ParaSol), the variety of possible objective func-
tions, and parameter non-uniqueness or the possibility of multiple combinations
of parameter values that yield similar results. General protocols have as a re-
sult been developed for the process of calibration and uncertainty quantification
(Abbaspour et al. 2018), but these are most applicable to SWAT models that
are (i) of limited geographical scope and (ii) calibrated on long time series of
observed hydrological data.

The geographical extent and heterogeneity of our model system — the whole
country of Panama — makes such protocols designed for single watersheds diffi-
cult to implement. Nor can we calibrate each watershed individually and then
aggregate them into a global model, as there are several small, ungauged water-
ways that would still require a more generalized model. Parameter interpolation
techniques addressing the issue of spatial gaps in hydrological data are an active
area of investigation (e.g., Asurza-Véliz and Lavado-Casimiro, 2020). Another
solution could be to use much simpler rainfall-runoff models based on a much
smaller set of equations, without explicit modeling of spatial variation (e.g.,
Dos Santos et al. 2018). This approach can be suited to the description of
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runoff and related phenomena (e.g., flash floods, Rozalis et al., 2010) but would
have to be extended if we desire to explicitly simulate changes in other physi-
cal processes such as groundwater infiltration, nutrient pollution, and land use
change using a single model architecture. As an alternative, spatially explicit
first-principles watershed models such as SWAT could be used, but without cal-
ibration of each of the model’s parameters. However, the utility and predictive
power of such models have not been examined in depth and we propose to do
S0 in this manuscript.

Panama provides a high bar to test the effectiveness of uncalibrated hydrological
models. Hydrological observations are lacking for many smaller rivers, and
watersheds across the country have a wide range of physical characteristics.
Due to its location on an isthmus, Panama is composed of several watersheds
with marked differences in precipitation regimes, ecology, and human use. For
example, the rain shadow effect caused by the central spine of mountains in
Western Panama leads to a wet, tropical climate on the Caribbean coast and
a more seasonally variable, drier climate on the Pacific coast (Kusunoki et al.
2019).

As the modeling of spatial variation is our central concern, we explore a rele-
vant avenue for improving the predictive power of SWAT: interpolation of the
precipitation input. Given that precipitation data is often more readily avail-
able than stream discharge and precipitation gauges are more numerous than
hydrological measurement stations, we propose and test modifications to the
precipitation submodel of SWAT that could make it more robust in contexts
where hydrological data is a limitation or sophisticated calibration techniques
are otherwise difficult. For both an “out-of-the-box” SWAT model and one with
our modified precipitation algorithm, we first examine the predictive accuracy
to estimate water availability (mean monthly streamflow) as well as variability
(standard deviation and maxima of discharge) across space and time, i.e., by
location and calendar month.

A physical hydrology model of the country built from first principles would
be an indispensable part of a central water resource management framework
both in terms of providing baseline hydrological information on ungauged wa-
tersheds and for simulating the effects of changes in climate on the interlocking
systems integral to the economy and ecology of the country. Furthermore, hav-
ing such a broad-based model provides a baseline for motivating more focused
area research, which could in turn feed back into and strengthen the global
model. To this end, the model will also serve as a key building block in the
ongoing larger initiative to develop a countrywide platform for sustainability
science (the Panama Research and Integrated Sustainability Model (PRISM);
http://prism.research.mcgill.ca).


http://prism.research.mcgill.ca/
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2. Methods

2.1 SWAT Model Setup

The SWAT model requires a set of spatially explicit inputs for the study area:
a digital elevation model (DEM), a soil map, a land use map, and a set of
weather station locations. The weather stations further must be provided with
precipitation, solar radiation, relative humidity, and wind data in the form of
either (i) records for each day of the simulation or (ii) parameters for a rainfall
distribution that the model samples from on each simulated day. The data
sources used for each of the above in the current study are summarized in Ta-
ble 1. Publicly available data on river discharge from the ETESA (Empresa
de Transmision Eléctrica, S.A; https://www.etesa.com.pa/) hydrological mon-
itoring network from the period 2005 — 2015 was used for model validation,
while ETESA precipitation data from the periods 1990 — 2000 and 2005 — 2015
were used for fitting the precipitation submodel parameters and running the
validation simulation respectively.

Watershed delineation was carried out in ArcSWAT. A threshold of 5000 cells
was chosen as the minimum inflow into an outlet for which a subbasin would be
defined, which amounts to a drainage area of about 40.5 km? given the DEM
cell size at the equator. Areas smaller than this which drain directly into the
sea or either neighboring country were not part of the model, resulting in a
model delineation covering roughly 65,000 km? or 86% of the total land area
of Panama. SWAT further assigns each non-branching segment of stream its
own subbasin and calculates Hydrological Response Units (HRUs) within each
subbasin based on existing combinations of soils, land use, and slope. SWAT
generates daily mean discharge output (m3s!) at the outlet of each subbasin,
so additional outlets were manually defined at the location of each hydrological
measurement station (65 in total) to provide direct comparison points. This
resulted in a delineation of 980 subbasins in total.

2.2 Precipitation interpolation

Daily precipitation data from ETESA was downloaded for 249 rain gauge loca-
tions across Panama, of which 120 were active during the simulation period of
2005 - 2015, though many had temporal gaps in their records. SWAT requires
daily precipitation values for each subbasin (980 in total in the current model)
and thus some method of interpolation is required to fill both spatial and tem-
poral gaps in the data coverage. For spatial gaps, the method used by default
is a nearest neighbor (or Thiessen polygon) interpolation from each subbasin
centroid to the nearest rain gauge. For temporal gaps, the default method is
sampling from an empirically determined rainfall distribution at rain gauge loca-
tions using a skew-normal distribution following Ficks (1974). Means, standard
deviations, skew, and wet-dry transition probability values were calculated at
all gauge locations using the observations spanning the period of 1990 - 2000.
Henceforth this default method will be referred to as the nearest neighbor (‘NN’)
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model.

In our modified method, interpolation of precipitation at each location was car-
ried out for each day, and separately for each of six regions that the country was
split into to account for climatic differences (Fig 2). The interpolation method
at each location incorporated two-steps: (1) we interpolated the probability of a
wet or dry day (occurrence) using a logistic regression with the inverse distance
weighted mean of observations in the region as the predictor (using a threshold
observation < 0.5 mm, dry gauges were given a value of 0 and wet gauges a value
of 1); (2) given the probability of a wet day, we performed a binomial trial; and
if a wet day was generated, we interpolated the quantity of rain, again using an
inverse distance weighted mean of all observed quantities of precipitation within
the region for that day. Dry days were assigned a quantity of 0 mm. Each of
the two steps involved a single parameter each, ; and 5, which controlled the
decay of the relative weighting with distance.

—ok dijkt
Pikt = % Eq 1
Where p;,, was the precipitation value of interest (i.e., either wet/dry or quantity
of rain), pjy, denoted all measured precipitation values, d;;,, was the distance
between points i and j, and ,, was a shape parameter.

These , values were fit separately to each monthly time interval (t), and each
of 6 regions (k) in Panama based on regional variation in climate, to capture ex-
pected differences in spatial and seasonal autocorrelation patterns. In addition,
this prevented the influence of gages that may be physically close to a point
but across a microclimatic boundary — most notably, areas on either face of the
central ridge of mountains in the Western half of the country are separated from
each other by this regional delineation.

Each fitted parameter () represented the average daily degree of spatial autocor-
relation within that region on that month. This fitting process was run using
the gauge data from 1990 - 2000, and the fitted algorithm was then used to
interpolate daily values at the 980 subbasin centroids using the measured data
from 2005 - 2015 for the validation run. This model will be referred to in this
manuscript as the regional distance-weighted or RDW model.

2.3 Model evaluation

As the objective was to gain insight into patterns of water distribution and ex-
treme flood events, the hydrological model results were compared against river
discharge data from ETESA, which was not used to calibrate or parameterize
any part of the models. R? and Nash-Sutcliffe Efficiency (NSE) of mean model
predictions against mean observed daily discharge values were calculated for
each month and station across the entire simulation period and these metrics
were used to gauge the ability to predict average flow. The Nash-Sutcliffe Ef-
ficiency or NSE is a metric often used to test hydrological models where NSE
= 0 indicates that the model is no better than using the mean of the observed
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values as the prediction, and NSE = 1 indicates that the simulation perfectly
corresponds to the observed values. Models with negative NSE values predict
worse than the mean value of the observations.

We also used NSE and R? to examine the ability of the hydrological model to
estimate the variation in water flow at a given location by comparing both stan-
dard deviations of discharge by month as well the magnitudes of the 3 highest
discharge events across the simulation period in each location-month combina-
tion, which we chose as representative of the extreme highs of the discharge
distribution at that location for that month, and as an indicator of flood risk.

Finally, we used NSE and R? to examine the model’s ability to simulate the
observed monthly time series of mean discharge within each basin from 2005 —
2015. Instead of spatial variation across locations, this procedure tested the abil-
ity of the model to capture temporal variation within each location. We posited
several variables across observation locations (hydrological stations) that could
explain variation in model predictiveness, namely: (i) elevation of the observa-
tion, as we did not account for orographic effects explicitly, (ii) existence of a
precipitation gauge within the same subbasin as the observation and (iii) number
of precipitation gauges in the region, as measures of the relevance and quantity
of precipitation information respectively, (iv) number of subbasins in the wa-
tershed, as larger watersheds can have more complex behaviour, (v) number of
subbasins downstream from the observation, as interior locations could be sub-
ject to terrestrial climate processes not explicitly modeled, and (vi) simulated
standard deviation of mean monthly discharge at the location, as the model may
be over- or underestimating variation in general. We used a stepwise forward
selection algorithm in R to arrive at the linear combination of these variables
and their pairwise combinations with the lowest AIC value.

3. Results

3.1 Precipitation interpolation

In the regional distance weighted (RDW) model, there was a strong seasonal
signal in the autocorrelation patterns (Figure 5). Maximum values of the in-
terpolation parameters ; and , correspond to the greatest weighting of the
closest stations and, correspondingly, the fastest decay in weighting with dis-
tance. These maxima consistently occurred for both precipitation occurrence
and quantity in April and October, and these months represent precisely the
two transitions between the wet (generally May to November) and dry seasons.
During these transitions, the immediate neighborhood of a point was reliably
much more predictive than areas that are further away. Over the remainder
of each season, the parameter value declined, indicating the opposite: that pre-
cipitation stayed more consistent over an entire region, leading to stations in
the region being more generally predictive of one another regardless of distance.
Parameter values for interpolating the occurrence of rain were also remarkably
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similar across regions for a given month, suggesting a countrywide seasonal ef-
fect. Variation across region was comparatively higher for the interpolation of
quantity, suggesting that there were regional differences in the spatial patterns
of rainfall intensity, given occurrence.

3.2 Model evaluation

Even without hydrological calibration, the standard SWAT model using nearest
neighbor precipitation interpolation (NN) performed well for mean discharge
across locations with an NSE and R2 of 0.7. Despite this strong performance,
improving the precipitation interpolation approach yielded even better predic-
tions, yielding NSE = 0.87 and R? = 0.88 using the RDW model (Table 2).

While the NN model worked well for mean discharge, it was less able to capture
different metrics of variability. For standard deviation, the RDW model achieved
NSE = 0.62, R? = 0.65, which compared very favorably with the NN model (NSE
= 0.26, R? = 0.35). For predicting the 3 highest values of daily discharge at
each location-month combination, we found again that the NN model performed
poorly, with NSE = 0.22, R? = 0.32, while the RDW model achieved an NSE
of 0.53, R? = 0.56 (Table 2).

We examined the predictiveness of temporal patterns within each watershed for
the NN and RDW models across the ten-year period. We found that, in contrast
to the country-wide analysis, the NN model performed generally poorly, with
24 out of 35 sites performing worse than the mean of the observations (NSE <
0), indicating that the NN model was less predictive at the median site than the
mean of observations. The RDW model performed significantly better: while
8 sites still performed poorly (NSE < 0), 18 sites had good performance at
NSE > 0.5 (Figure 4), and the median NSE was 0.4 across locations. Thus, the
RDW showed substantial improvements over the standard SWAT model using
NN, although the predictions were still imperfect. However, the performance
of RDW was largely predictable. We identified areas of failure in the RDW
model (NSE < 0) largely occurring in one region (the Pacific Northwest), as
well as in the Panama City area and Comarca Emberd. Further, 71% of the
variation in NSE across locations was explained by a linear combination of six
variables (and three interaction terms), namely: (i) elevation, (ii) proximity to a
precipitation gauge, (iii) number of gauges in the region, (iv) standard deviation
of discharge at the location, (v) number of downstream subbasins, and (vi) total
watershed size in number of subbasins (Table 3). Of these, (ii), (v), (vi), and
the interaction terms (iv)*(vi) and (v)*(vi) were found to be significant (p <
0.05).
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4. Discussion

4.1 Model performance

Process-based hydrological models could be useful in predicting changes to water
availability and extreme discharge events. However, it was unclear the extent
to which such models would be predictive without calibration — without this
capability, their utility would be reduced at larger scales and in countries where
many waterways remain ungauged. Our results suggest that concerns about run-
ning detailed hydrological models without calibration are warranted (e.g. Dos
Santos et al. 2018) - the uncalibrated standard SWAT model failed to predict
variability and maxima of discharge across locations and temporal fluctuations
within most watersheds at a monthly timestep. However, modifying the pre-
cipitation interpolation to incorporate spatial autocorrelation greatly improved
predictions of hydrological patterns. Our RDW model yielded substantial im-
provements across all metrics examined, most notably more than doubling the
variation explained for standard deviations and maxima of discharge across lo-
cations and calendar months. While it also significantly improved prediction of
mean monthly discharge, standard deviations and maxima represent additional
information about the hydrological distributions that are crucially important
in the predictive modeling of flood risk (e.g. van der Wiel et al. 2019). Intra-
annual variability in water availability is furthermore a critical indicator of water
scarcity, despite often being overlooked in favour of annual means (Damkjaer &
Taylor, 2016).

In addition to performing well in predicting the spatial variation of these statis-
tics, the RDW model dramatically improved predictions of temporal variability
within watersheds (median NSE = 0.4 across locations, NSE > 0.5 at 50% of loca-
tions), compared to the uncalibrated standard SWAT model (median NSE < 0,
all locations NSE < 0.5). Furthermore, we could largely identify where failures
in the RDW model should occur (explaining 71% of the variation in NSEs). The
most significant predictors of better performance at a given hydrological station
were (i) the presence of a precipitation gauge within the subbasin itself, (ii) the
number of subbasins downstream of the one of interest, (iii) the total number
of subbasins in the entire watershed, and two interaction terms: between the
simulated standard deviation of discharge at a point and the total number of
subbasins in its watershed, and between the number of subbasins downstream
of a point and the total number of subbasins in its watershed. While all three
single variables had a positive effect on NSE, and thus on model performance,
the two interaction terms notably had negative effects. The negative effect of
the interaction between number of downstream subbasins and total watershed
size suggests that the positive effect of a large watershed is reduced by being
further upstream in that watershed, i.e., that interior subbasins in large water-
sheds tend to do poorly. The presence of a precipitation gauge very close to
the location has a positive effect as predicted, pointing to the importance of
relevant precipitation input.
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The single-basin NSE values produced by the RDW model tend on the whole
to be lower than those reported in calibrated single-basin studies, which is to
be expected. In addition to being a significant improvement on the default NN
model, the RDW model has clearly-defined areas of failure that could benefit
from more specific study. Furthermore, the improvement of the precipitation
model does not aim to replace the role of traditional hydrological calibration in
finer-scale analyses of individual watersheds. The modular nature of a SWAT
model makes it possible to run parameter calibration procedures for specific ar-
eas of interest pending data availability, while the interpolation of precipitation
serves as an improved baseline for the entire country.

4.3 Caveats and limitations

While our focus was on improving the precipitation sub-model, models such as
SWAT also incorporate several other input data layers such as maps of soils and
land use, which may be avenues for further improvement of model performance.
Nonetheless, our analyses provide evidence that even without calibration of
model parameters or modification of the other input layers, it is possible to
generate useful large-scale predictions of variation in hydrology by capturing
patterns of spatial autocorrelation in precipitation.

The interpolated model showed good predictive power across a range of metrics,
but it was not a panacea. As expected, predicting maxima of discharge was more
difficult than predicting mean discharge across locations (i.e, NSE 0.54 versus
0.87, respectively). Further, the model’s predictive ability across different areas
of Panama was spatially heterogeneous. We argue that it is equally important
to know where models should fail, and the linear model assessing hypothesized
predictors of failure captured 71% of spatial variation in model performance as
measured by NSE at each location.

While hydrological models take into account non-stationarity in terms of envi-
ronmental conditions (e.g., precipitation), the underlying fitted parameter val-
ues representing rainfall spatial autocorrelation may not be constant. However,
parameter values for the interpolation algorithm were fitted using precipitation
data from 1990 — 2000 and validated on hydrological data from 2005 — 2015, pro-
viding evidence of some temporal stability. Moreover, the peaks in parameter
values in the months of April and October (indicating the unreliability of close
neighbors in predicting precipitation values at a given gauge) coincide with the
periods of change in variation patterns of observed rainfall in several locations
across the country (Fabrega et al., 2013) as well as periods of strongest increase
and decrease in average rainfall respectively (Kusunoki et al., 2019). Further
elucidation of the processes that lead to the variation captured by the current
model may aid in the development of a dynamical procedure that can account
for nonstationarity. Process-based model improvements can match or outper-
form calibrated models (e.g., Qi et al., 2020 found this to be the case for a soil
process extension of SWAT). While seasonal and regional patterns of spatial
autocorrelation in precipitation are being studied in several arid and semi-arid

10
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areas in places such as China (Xu et al., 2021) and Iran (Darand et al., 2017),
to our knowledge it is a relatively understudied phenomenon in the tropics. The
existence of seasonal signals in the parameter values as well as the marked im-
provement of the model by accounting for these patterns both point to the need
for further study.

Conclusions

Our findings indicate that even uncalibrated hydrological models such as SWAT
can be highly predictive, and that a key limitation had been the simple nearest-
neighbor accounting of spatial autocorrelation in the precipitation sub-model.
As precipitation gauges tend to be common and relatively simple to set up, the
application of hydrological models across large spatial contexts becomes much
more feasible, even in regions without long time-series of hydrological data.

Data availability

All data of simulation results used in the current analysis are available at https:
//doi.org/10.5281/zenodo.5498323.
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Tables and figures

Table 1. Data sources for building the SWAT model.

@ >p(- 2) * >p(- 2) * @ Data layer & Source

DEM (Digital Elevation Model) & USGS Earth Resources Observation

And Science (EROS) Center. (2017). Shuttle Radar Topography Mis-

sion (SRTM) 1 Arc-Second Global [Data set]. U.S. Geological Survey.
https://doi.org/10.5066/F7PR7TFT

Soil map & FAO-UNESCO Soil Map of the World, accessible at https://data.apps.fac.org/map/catalog/srv/eng
8383-11db-b9b2-000d939bc5Hd8

Land use map &

1. For fitting the precipitation submodel, simulation period 1990 — 2000;
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2. For the validation simulation, 2005 — 2015; "Panama 2012 Forest Cover

and Land Use”, STRI GIS Data Portal, accessible at https://stridata-

si.opendata.arcgis.com/maps/SI::panama-2012-forest-cover-and-land-use-

tile-layer /about

Precipitation & discharge & ETESA hydrological and meteorological stations,

STRI meteorological stations

&

Other climate variables (Solar radiation, wind, relative humidity, temperature)

& National Centers for Environmental Prediction (NCEP) Climate Forecast
System Reanalysis (CFSR) data, available at https://globalweather.tamu.edu/

Table 2. Summary of simulation results; all statistics calculated per location

per month.
Model Summary statistics (monthly discharge, m?/s)
Mean Standard deviation Maxima
R2 NSE R2
Nearest neighbour 0.70 0.70 0.35
Regional distance-weighted 0.88 0.87 0.65

Table 3. Linear regression model summary for predictors of within-basin NSE

value. AIC = 5.74, R? of prediction = 0.71.

Variable Estimate Std. Error Significance (p < 0.05)
Intercept -0.49319  0.40089

1. Elevation 0.00067 0.00222

2. Presence of gauge in subbasin 0.23928 0.10765 *
3. Total number of gauges in region  -0.00027  0.00640

4. SD of discharge (simulated) 0.00760  0.00847

5. Number of downstream subbasins 0.15142 0.03346 *
6. Size of watershed (# subbasins) 0.01755  0.00440 *
Interaction term 5:6 -0.00204  0.00047 *
Interaction term 4:6 -0.00037  0.00011 *
Interaction term 1:5 -0.00036  0.00025
Interaction term 3:4 0.00017 0.00014

Figure 1: Map of meteorological and hydrological stations used in simulation.

Basin area upstream of gauge locations used for validation highlighted in blue
(30 basins), all other regions were ungauged for the period of 2005 — 2015. Not
all meteorological stations are necessarily active at any given point.
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Figure 2: Climatic regions as delineated on the area covered by the SWAT model.
1 — Caribbean side of the Tabasara mountains, 2 — Pacific side of the Tabasara
mountains, 3 — Azuero peninsula, 4 — Central Panama, 5 — East-Central Panama,
6 — Darien region

i

( R *
. -
¥

Figure 3: Scatterplots of different models — nearest neighbour and regional
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distance-weighted; mean monthly discharge, standard deviations, and maximum

monthly discharge by location
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Figure 4: NSE for monthly mean prediction by basin for (a) final regional
distance weighted model and (b) nearest neighbor model. Basins with NSE <

0 are not labeled.

16

2500



¢ Measurement stations

Watershed NSE
[ 1<0.06
[10.06-0.28
[ 0.28 - 0.49
B 0.49 - 0.69
(b) I 0.69 - 0.86

Figure 5: Interpolation parameter values for the RDW model. A higher value of
the parameter indicates that closer neighbours are weighted much higher than
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ones further away, and a lower value indicates a slower distance-decay function
and thus a more even distribution of weights across the region.

Strength of interpolation parameters
by region and month
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