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Abstract: The present paper places emphasis on the most widely used Computational Fluid Dynamics
(CFD) approaches, namely the Eulerian and Lagrangian methods each of which is characterized
by specific advantages and disadvantages. In particular, a weakly compressible smoothed particle
(WCSPH) model, coupled with a sub-particle scale (SPS) approach for turbulent stresses and a new
depth-integrated non-hydrostatic finite element model were employed for the simulation of regular
breaking waves on a plane slope and solitary waves transformation, breaking and run-up. The
validation of the numerical schemes was performed through the comparison between numerical and
experimental data. The aim of this study is to compare the two modeling methods with an emphasis
on their performance in the simulation of hydraulic engineering problems.

Keywords: Eulerian method; Lagrangian method; smoothed particle hydrodynamics models; finite
element method; wave transformation; breaking; run-up

1. Introduction

Nowadays, numerical methods are becoming the main tool used by scientists and
researchers to study fluid dynamics problems. Even if experimental investigations provide
a lot of reliable data useful to calibrate numerical models, experimentation requires a lot of
time to be planned and executed, usually at a high economical cost. Moreover, the results
of experimental tests are limited to just a fixed number of points, while computational
methods can provide the desired quantities in any point of the computational domain,
allowing a better understanding of the physical phenomena under investigation.

The numerical models for the study of a fluid motion could be based on two different
approaches, the Eulerian or the Lagrangian method. The main difference between the
two methodologies is that while a Eulerian method discretizes space into a fixed grid
and finds the unknown variables at the nodal points, the latter discretizes the continuum
into a certain number of moving nodes. Moreover, while in a Lagrangian approach the
properties of the single fluid particle are studied in accordance with the initial spatial and
temporal position, the Eulerian approach represents the distribution of these properties
in a domain without referring to the history of the particle’s trajectories. For example,
from the experimental point of view, the PIV (Particle Image Velocimetry) technique allows
reconstruction of the velocity vectors that occupy an instantaneous velocity field, based
on the average particle motion in space [1–3]. Instead, from a Lagrangian viewpoint, PTV
(Particle Tracking Velocimetry) traces the pathway of an individual particle from a sequence
of images in a system. This method is better than PIV for handling non-stationary flow [4].

Eulerian approaches or grid-based methods such as the finite element method (FEM),
finite difference method (FDM) and finite volume method (FVM) have been applied to a
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wide range of engineering applications such as breaking waves [5–7], eddies [8], hydraulic
jumps [9–12], sediment transport [13] and current and oil drift modeling [14–17].

Despite their great success, grid-based methods suffer from some difficulties, in
particular for those cases that present discontinuities or whose mesh needs to be modified
during run time according to topological changes.

For these reasons, during the last few years, research has been focused on the de-
velopment of Lagrangian and meshless techniques, such as the discrete element method
(DEM) [18], immersed particle method (IPM) [19], smoothed particle hydrodynamics
(SPH) [20] and finite volume particle method (FVPM) [21].

Lagrangian methods have been successfully applied in different fields of fluid dynam-
ics, such as free surface flows [22], the breaking and impact of waves [23–27], multiphase
flows [28,29], sediment transport [30–32], fluid-structure interaction problems [33–35],
oscillating jets that induce breaking waves [36–39] and hydraulic jumps [40–46].

New research challenges in Computational Fluid Dynamics (CFD) are currently evolv-
ing; in particular, recently, research has been focused on coupling the Eulerian– Lagrangian
techniques to combine the advantages of the individual models in a single model, thus
increasing the accuracy, efficiency and regime of validity. For example, the SPH code is
also being coupled with the discrete element Method [47] or with the distributed contact
discrete element method (DCDEM) [48] for fluid–solid modeling.

The flow is described by the Navier-Stokes Equations and can be solved by using
the two main classes of methods: finite element methods and meshfree methods. Both
methodologies discretize a partial differential system into a set of algebraic equations that
can be easily solved by computer implementation.

To simulate a turbulent flow, the RANS( Reynolds-Averaged Navier–Stokes) modeling
approach has been widely employed leading to the Reynolds-averaged N-S, where the
instantaneous values of velocity and pressure are defined as the sum of a mean and
fluctuating component [49]. The simplest RANS models are the eddy viscosity models
(based on the Boussinesq hypothesis) where the Reynolds stresses are modeled using an
eddy (or turbulent) viscosity νt. The eddy viscosity can be determined from a turbulent
time-scale (or velocity scale) and a turbulent length-scale using the turbulent kinetic energy
(k) and the turbulence dissipation rate (ε).

The most commonly-applied turbulence model for its reasonable accuracy to estimate
νt for a wide range of flows, is the two-equation k-ε model [50]. The two-equation k-ε model
has been utilized in Shao [51,52] and De Padova et al. [53], showing a good comparison
between the numerical and experimental turbulent quantities.

Another more recent approach is the Large Eddy Simulation (LES). The main difference
between the RANS and LES approaches is that the N-S Equations are, in the former, time-
averaged and, in the latter, space filtered.

Within Eulerian methods, the RANS approach is the most widely used, followed by
LES due to its lower computational cost. Recently, hybrid RANS-LES methods, such as
detached eddy simulation (DES), are growing in popularity [54].

The purpose of this paper is to show the versatility of a grid-based and meshless
method to simulate free surface hydrodynamic problems. In Section 2, focus is put on
giving the basic concepts of both numerical formulations; in Section 3, as an application,
both a weakly compressible smoothed particle (WCSPH) model, coupled with a sub-
particle scale (SPS) turbulence model and a non-hydrostatic discontinuous/continuous
Galerkin model (non-hydrostatic D/C Galerkin) are used to study the physics of regular
and solitary waves propagation, breaking and run-up.

2. Lagrangian and Eulerian Methods
2.1. SPH Formulation

SPH is a Lagrangian meshfree particle method developed by Lucy [55] and Gingold
and Monaghan [56]; the reader is referred to [57–60] for a general description of SPH.
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In the present paper, a WCSPH model, coupled with a sub-particle scale (SPS) ap-
proach to modeling turbulence [61] has been used. Description of the WCSPH can be found
in Monaghan [62] and Gomez-Gasteira et al. [63]. WCSPH has been widely used for many
applications such as wave breaking [23,25], dam break flows [64,65], wave generation and
absorption [66], hydraulics jumps [42] and the interaction between jets and waves [38].
The alternative approach, developed by Lo and Shao [67,68], is defined as incompressible
SPH. The reader can find a comparison between the two algorithms in [69–71]. The main
difference between the two approaches exists in the way the pressures are calculated: the
former explicitly uses an equation of state [23,62], while the latter solves a Poisson pressure
equation with a source term as a function of velocity divergence or time variation density.

The motion is represented by the Navier-Stokes Equations for a weakly compressible
SPH semi-discrete form: {

dρ
dt = −ρ∇v

dv
dt = − 1

ρ∇P + Γ + f
(1)

where ρ is the density, v is the velocity vector, P is the pressure, Γ denotes the dissipation
terms and f represents accelerations due to external forces, such as gravity. In the SPH
formalism, the discrete form of the continuity equation at a point i can be written as
follows [72]:

dρi
dt

= ρi ∑
j

mj

ρj

(
vi − vj

)
·∇iW

(
xi − xj, h

)
+ Di (2)

The summations are extended to all of the particles j at a distance from i smaller
than 2h (h defined as the smoothing length), i.e., lying within the circle where the adopted
cubic-spline kernel function W [60] is defined. The term Di represents a numerical diffusive
term [73], which can be introduced in order to reduce density fluctuation. The general form
of a density diffusion term is:

Di = δhci ∑
j

ψij·∇W
(
xi − xj, h

)
Vj (3)

where δ is the Delta-SPH coefficient, which controls the magnitude of the diffusion term, ci
is the numerical speed of sound, Vj is the associated volume of the j-th particle and ψij is
the artificial dissipation term; in the present paper, the artificial dissipation term proposed
by Molteni and Colagrossi [74] was chosen.

The discrete form of the momentum equation, written in an SPH formalism, can be
written as it follows [71]:

dvi
dt

= −∑
j

mj

(
Pi + Pj

ρiρj

)
∇W

(
xi − xj, h

)
+ 〈Γi〉+ f (4)

The momentum dissipation term Γi is obtained coupling the viscous dissipation in
the laminar regime, as approximated by Lo and Shao [68], with a sub-particle scale (SPS)
model [71]. The former can be expressed with the following formula:

νo∇2vi = ∑
j

mj
4ν0(xi − xj)·∇W

(
xi − xj, h

)(
ρi + ρj

)((
xi − xj

)2
+ η2

) (vi − vj
)

(5)

where υ0 is the kinematic viscosity and η is a parameter that guarantees a non-singular
operator. In the DualSPHysics solver, η is equal to 0.001h2, with

{
η ∈ R; xi − xj > η

}
.

The SPS contribution to the momentum dissipation can be expressed as follows [71]:

1
ρ
∇τ∗ij = ∑

j
mj

(
τ∗i + τ∗j

ρiρj

)
∇iW

(
xi − xj, h

)
(6)
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where τ* is the sub-particle scale stress tensor, which can be modelled by an eddy viscosity
closure as:

τij

ρ
= 2νt

(
Sij − 1

3
Sijδij

)
− 2

3
Cl∆

2δij
∣∣∣Sij
∣∣∣2 (7)

where νt = (Cs∆)2∣∣Sij
∣∣2, Cs = 0.12 is the Smagorinsky constant, Cl = 0.00066, ∆ is the

initial particle spacing and
∣∣Sij
∣∣ = 1/2

(
2SijSij)1/2 is the local strain rate. A more detailed

description of the LES-SPS model using Favre averaging in a weakly compressible approach
can be found in [23].

2.2. Non-Hydrostatic Discontinuous/Continuous Galerkin Model

The Eulerian grid-based method used in this paper is the non-hydrostatic D/C
Galerkin, presented in Calvo et. al [7]. The model is a two-dimensional depth-integrated
non-hydrostatic model with the capacity of simulating wave propagation, breaking and
run-up in a finite element framework.

Eulerian grid-based depth-integrated models using the Boussinesq-type Equations
(BTEs) have been traditionally utilized to simulate wave propagation, but the high order
partial derivative terms included in BTEs cause numerical instabilities The shallow water
models with non-hydrostatic pressure distribution have shown their capacity for accu-
rate modeling of nonlinear and dispersive waves since their introduction by Casulli and
Stelling [75] and Stansby and Zhou [76]. The vertical momentum is considered in these
models by the introduction of a non-hydrostatic pressure term into the Reynolds-averaged
Navier-Stokes Equations. The non-hydrostatic models for water waves are classified as
either single-layer models (two-dimensional depth-integrated non-hydrostatic) or multi-
layer models (three-dimensional non-hydrostatic), depending on the number of layers in
the vertical discretization. The capabilities of the non-hydrostatic models for water waves
with single or multiple layers in the vertical direction has been researched by Stelling and
Zijlema [77]; Zijlema et al. [78]; Zijlema and Stelling [79] and Zijlema et al. [80], among
others.

The non-hydrostatic D/C Galerkin model is constructed using a combination of dis-
continuous and continuous Galerkin methods, where the depth-integrated non-hydrostatic
Equations are separated into hydrostatic and non-hydrostatic parts. The hydrostatic part
corresponds to the depth-integrated shallow water

Equations and is solved with a discontinuous Galerkin FEM for the simulation of
discontinuous flows, wave breaking and run-up. The non-hydrostatic part results in a
Poisson-type equation where the non-hydrostatic pressure is resolved by a continuous
Galerkin finite element method for the modeling of wave propagation and transformation.
The model utilizes linear quadrilateral finite elements for horizontal velocities, water
surface elevations and non-hydrostatic pressures that permit local refinement and complex
boundaries.

The governing Equations in the conservation form for depth-integrated, non-hydrostatic
flow in the Cartesian coordinates system (x, y and z) are:

∂(HU)

∂t
+

∂(HUU)

∂x
+

∂(HUV)

∂y
= −gH

∂ξ

∂x
− gn2U

√
U2 + V2

H
1
3

− H
2ρ

∂qb
∂x
− qb

2ρ

∂(ξ − h)
∂x

(8)

∂(HV)

∂t
+

∂(HUV)

∂x
+

∂(HVV)

∂y
= −gH

∂ξ

∂y
− gn2V

√
U2 + V2

H
1
3

− H
2ρ

∂qb
∂y
− qb

2ρ

∂(ξ − h)
∂y

(9)

∂H
∂t

+
∂(UH)

∂x
+

∂(VH)

∂y
= 0 (10)

∂W
∂t

=
qb
ρH

(11)

where U, V and W are the depth-averaged velocity components in the x, y and z direc-
tions; ρ is the water density; n is Manning’s roughness coefficient; g is the gravitational
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acceleration. The flow depth is H = ξ + h, where ξ is the surface elevation measured from
the still water level and h is the water depth measured from the still water level. A linear
distribution is assumed in the vertical direction for both the non-hydrostatic pressures and
for the vertical velocities. The non-hydrostatic pressure on the free surface is assumed as
zero and, in the bottom, as qb. The effects of the turbulence, Coriolis force, atmospheric
pressure and baroclinic pressure gradient, are traditionally ignored in the study of non-
hydrostatic wave propagation. However, simulation with these effects is possible; see, e.g.,
Stelling and Busnelli [81]. The average vertical velocity, W, is (wξ + wb)/2, where wξ is the
vertical velocity at the surface and wb is the vertical velocity at the bottom. The kinematic
boundary conditions of the free surface and the bottom are:

wξ =
∂ξ

∂t
+ uξ

∂ξ

∂x
+ vξ

∂ξ

∂y
(12)

wb = −ub
∂h
∂x
− vb

∂h
∂y

(13)

with uξ , vξ , ub and vb being the components in x and y of the velocities next to the free
surface and the bottom, respectively. Due to the linearization of the vertical momentum
equation, it is well recognized that the depth-integrated non-hydrostatic models are only
appropriate for weakly nonlinear cases [82].

The solution begins by solving the horizontal momentum Equations (8) and (9),
without the non-hydrostatic pressure terms, by means of a discontinuous Galerkin method.
These horizontal momentum Equations, coupled with the mass conservation Equation (10),
can be written in the conservative form of Equation (14).

∂U
∂t

+∇.F(U) =
∂U
∂t

+
∂E(U)

∂x
+

∂G(U)

∂y
= S(U) (14)

The vectors of conserved variables U, source vector S, and flux vectors F(U) are given
in Equations (15) to (18).

U =


qx
qy
H

 (15)

S =


−gH ∂ξ

∂x −
gn2U

√
U2+V2

H1/3

−gH ∂ξ
∂y −

gn2V
√

U2+V2

H1/3

0

 (16)

F = (E(U), G(U)) (17)

E(U) =


q2

x/H
qxqy/H

qx

, G(U) =


qxqy/H
q2

y/H
qy

 (18)

In these Equations, qx and qy are discharges per unit width in the x and y directions
and are equal to HU and HV, respectively.

The discontinuous Galerkin formulation of the governing Equation (14) is obtained by
multiplying it with a shape function ϕ and integrate over an element, Ωe. The flux term F is
integrated using Gauss theorem, resulting in Equation (19). In this equation, n =

(
nx, ny

)
is the outward unit normal vector at an element boundary Γe.∫

Ωe
ϕ

∂U
∂t

dΩ +
∫

Γe
ϕF.n dΓ−

∫
Ωe

F.∇ϕ dΩ =
∫

Ωe
ϕ S dΩ (19)
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In the discontinuous Galerkin method, the variable vector U is approximated over a
quadrilateral element by:

U(x, y) ≈
4

∑
j=1

Uj ϕj(x, y) (20)

where Uj are nodal values of the variables and ϕj(x, y) are the bilinear approximation
functions of the solution variables or shape functions. Since in a discontinuous Galerkin
context the discontinuities of variables at the element boundaries are allowed, the intercell
flux is taken as being dependent on the values U in each of the two adjacent elements.
Thus, the normal flux F.n is not exclusively defined and is substituted by a numerical flux
F̃(UL,UR) where UL and UR are the variables at the left (internal) and right (external) sides
of the element boundary in the counterclockwise direction, respectively. Consequently, the
second integral in Equation (19) is expressed as:∫

Γe
ϕF.n dΓ =

∫
Γe

ϕF̃d (21)

In this analysis, F̃ is chosen to be the common Harten-Lax-van Leer (HLL) numerical
flux [83]. The first step of the solution process ends with the intermediate estimation of the
conserved variables qx and qy from Equation (17): q̃n+1

x and q̃n+1
y .

In the second step of the solution, a Poisson equation is constructed that is then solved
by a continuous Galerkin method to obtain the non-hydrostatic pressures qn+1

b . A time
approximation of the vertical moment Equation in (11) is:

wn+1
ξ = wn

ξ − wn+1
b + wn

b +
2∆tqn+1

b
ρHn (22)

The vertical velocity at the bottom is valued from the kinematic boundary condition
(16), estimated as:

wn+1
b = −Un ∂h

∂x
−Vn ∂h

∂y
(23)

wn
b = −Un−1 ∂h

∂x
−Vn−1 ∂h

∂y
(24)

From the remaining part of the horizontal momentum, Equations (8) and (9) including
the non-hydrostatic pressure terms:

∂(HU)

∂t
= − H

2ρ

∂qb
∂x
− qb

2ρ

∂(ξ − h)
∂x

(25)

∂(HV)

∂t
= − H

2ρ

∂qb
∂y
− qb

2ρ

∂(ξ − h)
∂y

(26)

The final horizontal velocities, influenced by the non-hydrostatic pressure, can be time
approximated as

Un+1
c = Ũ n+1 − ∆t

2ρ

∂qn+1
b

∂x
− ∆t

2ρ

qn+1
b
Hn

c

∂

∂x
(ξn

c − h) (27)

Vn+1
c = Ṽ n+1 − ∆t

2ρ

∂qn+1
b

∂y
− ∆t

2ρ

qn+1
b
Hn

c

∂

∂y
(ξn

c − h) (28)

In the continuous Galerkin solution of the non-hydrostatic pressures, the continuous
horizontal velocities Un+1

c and Vn+1
c , continuous water level ξn

c and flow depth Hn
c , vertical

velocities wξ and wb, and non-hydrostatic pressures qn+1
b are approximated with nodal

variables, which have the same value in all the adjoining elements. The continuous
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intermediate velocities Ũ n+1 and Ṽ n+1 are obtained from the intermediate evaluation of
the discontinuous discharges q̃n+1

x and q̃n+1
y integrating over the entire domain Ω.∫

Ω
ϕŨ n+1dΩ =

∫
Ω

ϕŨn+1
dc dΩ (29)

∫
Ω

ϕṼ n+1dΩ =
∫

Ω
ϕṼn+1

dc dΩ (30)

where the discontinuous intermediate velocities Ũn+1
dc and Ṽn+1

dc are approximated in an

element using the values of q̃n+1
x
Hn and

q̃n+1
y
Hn , respectively, evaluated at the nodes. Similarly,

the continuous water level elevations ξn
c are obtained from:∫

Ω
ϕξn

c dΩ =
∫

Ω
ϕξndΩ (31)

where ξn = Hn − h. Finally, the continuous flow depth, Hn
c , is Hn

c = ξn
c + h. To obtain a

correct solution between the velocity field and the non-hydrostatic pressures, the continuity
equation is applied directly to the water column

(
∂Un+1

c
∂x

+
∂Vn+1

c
∂y

)
+

(
wn+1

ξ − wn+1
b

Hn
c

)
= 0 (32)

Substituting Equations (22), (23) and (25) in Equation (28), applying Gauss’s theorem
in some terms, and neglecting others, a Poisson equation is established from which the
hydrostatic pressure in the bottom, qn+1

b , is obtained.
A continuous Galerkin finite element model to solve the Poisson equation on an

element Ωe is ∫
Ωe

ϕ
2∆tqn+1

b
ρ(Hn

c )
2 dΩ +

∫
Ωe

∂ϕ
∂x

∆t
2ρ

∂qn+1
b
∂x dΩ +

∫
Ωe

∂ϕ
∂y

∆t
2ρ

∂qn+1
b
∂y dΩ

−
∫

Ωe
ϕ ∆t

2ρHn
c

∂qn+1
b
∂x

∂
∂x (ξ

n
c − h)dΩ −

∫
Ωe

ϕ ∆t
2ρHn

c

∂qn+1
b
∂y

∂
∂y (ξ

n
c − h)dΩ

= −
∫

Ωe
ϕ
(

∂Ũ n+1

∂x + ∂Ṽ n+1

∂x +

(
wn

ξ +wn
b−2wn+1

b

)
Hn

c

)
dΩ

(33)
After all of the variables in Equation (29) have been approximated, as in Equation (20),

and all of the elements of the domain have been assembled, the resulting linear system is
solved to obtain the non-hydrostatic pressures, qn+1

b .
In the last step of the solution, once the non-hydrostatic pressures qn+1

b are known,
the Equations (27) are solved on an element to obtain the final solutions for the discharges
qn+1

x and qn+1
y . A Galerkin finite element model to solve Equation (24) on an element Ωe is:

∫
Ωe

ϕqn+1
x dΩ =

∫
Ωe

ϕq̃n+1
x dΩ−

∫
Ωe

ϕ
∆tHn

2ρ

∂qn+1
b
∂x

dΩ−
∫

Ωe
ϕ

∆tqn+1
b

2ρ

∂(ξn − h)
∂x

dΩ (34)

∫
Ωe

ϕqn+1
y dΩ =

∫
Ωe

ϕq̃n+1
y dΩ−

∫
Ωe

ϕ
∆tHn

2ρ

∂qn+1
b
∂y

dΩ−
∫

Ωe
ϕ

∆tqn+1
b

2ρ

∂(ξn − h)
∂y

dΩ (35)

Finally, with the discharges qn
x , qn

y , qn+1
x , qn+1

y and the flow depth Hn known, the
unknown flow depth Hn+1 is determined from the continuity Equation (13) using the
discontinuous Galerkin formulation in Equation (19). Details of the entire solution process
can be found in Calvo et. al [7]. After each of the three solution steps, a special slope
limiter for quadrilateral elements is applied. Details of the developed slope limiter for
quadrilateral elements can also be found in Calvo et. al. [7].
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3. Applications

A total number of four cases of breaking waves have been simulated in the present
study, named T1, T2, T3 and T4, respectively. Among these, there is one case of spilling/
plunging breaker (T1), one case of plunging breaker (T2), one case of a solitary wave
propagation over a fringing reef (T3) and one case of a solitary wave run-up on a beach of
constant slope (T4).

The validity of the numerical schemes described above, has been checked against the
experimental observations. In particular, the first two data sets (T1 and T2) were based
on experiments by De Serio and Mossa [84]; the third data set was chosen out of the
experiments by Roeber [85] and Roeber et al. [86]; the last data set (T4) was chosen out of
the experiments by Titov and Synolakis [87].

3.1. Experimental Set Up
3.1.1. Regular Breaking Waves on a Plane Beach

The experiments by De Serio and Mossa [84] were carried out in a wave flume 45 m
long and 1 m wide, located at the Department of Civil, Environmental, Land, Building
Engineering and Chemistry of the Polytechnic University of Bari, Italy (Figure 1). The
flume has an initial flat bottom of 12 m extending from the wave paddle to section 73,
while from section 73 up to the shoreline the bottom has a 1/20 slope, obtained with
a wooden panel. The wavemaker is a piston-type, whose paddles produce the desired
wave by moving the water mass according to a proper input signal. The wave elevations
were measured with a resistance probe, while the instantaneous Eulerian velocities were
acquired by a backscatter, two-component, four beam Laser Doppler Anemometer (LDA)
system and a signal processor (Figure 1).

Figure 1. Experimental apparatus: (a) a part of the wave channel and (b) the LDA probe.

Table 1 shows the main parameters of the two examined waves, in particular, the
offshore wave height H0, the wave period T, the offshore wavelength L0, the Irribarren
number ξ0, which has been estimated in section 76, located where the bottom is flat with
water depth d equal to 0.70 m. Based on the Irribarren number ξ0, the two regular tested
waves were characterized by a spilling/plunging and plunging breakers, respectively.

Table 1. Experimental parameters of the analysed regular waves.

Test H0 (cm) T (s) L0 (m) d (m) ξ0 Breaking Type

T1 11 2 4.62 0.70 0.37 Spilling/plunging

T2 6.5 4 10.12 0.70 0.74 plunging

The sketch of Figure 2 shows the different sections named 76, 55, 49, 48, 47, 45, which
have been used to make the comparisons between the simulated and measured free surface
elevations.
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Figure 2. Sketch of the channel with indications of the investigated sections used to calibrate the numerical model.

3.1.2. Solitary Waves

The experiment by Roeber [85] and Roeber et al. [86] was performed in a wave channel
48.8 m long and 2.16 m wide, equipped with a piston-type wavemaker for solitary wave
generation. The test involves a steep solitary wave with a height A = 0.5 m and a water
depth of h = 1 m, resulting in A/h = 0.5. The wave was transformed over a fringing reef
with a 1:5 slope onto a dry reef flat. Further details on this experimental test can be found
in Roeber [85] and Roeber et al. [86].

The experimental study by Titov and Synolakis [87], reproduced a solitary wave
run-up with wave height A/h = 0.3 (where A is the solitary wave height and h is the still
water depth) on a plane beach with a slope of 1:19.85. The solitary wave had a height
A = 1 m with a water depth of 3.33 m, resulting in A/h = 0.3.

3.2. Numerical Parameters

In this section, the parameters used for all four tests (T1-T4) in both numerical ap-
proaches have been described.

3.2.1. SPH Parameters

The SPH results discussed here were obtained using the hardware accelerated Dual-
SPHysics code [88]. Since the first release back in 2011, DualSPHysics has been shown to
be robust and accurate for simulating free surface flows yet requiring high computational
cost.

Therefore, recently, the high-performance computing of SPH has mainly focused on
Graphical Processing Units (GPUs) [89], which are superior in terms of price and energy
consumption compared to traditional CPUs. On DualSPHysics, the C++ programming
language is used to code the SPH formulation for CPU execution, while GPU executions
are based on NVIDIA’s CUDA architecture [72]. The specific features of the open-source
code are detailed in [72,89].

For the first two tests (T1–T2), following the experimental setting [84], the numerical
wave tank was 22.5 m long and 0.97 m high, while the initial water depth was equal
to 0.70 m. In De Padova et al., [27] the convergence analysis for T1 showed that only
d/∆x ≥ 35 (∆x≤ 0.02 m) guaranteed the independence of the SPH result from the reso-
lution and yielded a result in accordance with the experiments. However, in this study,
simulations were performed by choosing a higher resolution than shown by De Padova
et al. [25,27], in order to show the efficient and reliable use of DualSPHysics code executed
on a GPU architecture also with a large number of particles. In particular, the 2D flow
(T1 and T2) was simulated by discretizing the computational domain through a particle
distribution with initial particle distance ∆x =∆z varying from to 0.02 to 0.003 m. Figure 3
shows that d/∆x ≥ 35 (∆x≤ 0.02 m) guaranteed the independence of the SPH result from
the resolution. This again confirms the results by [27]. Following, the results and per-
formance analysis for T1 and T2 were carried out considering an initial particle distance
∆x = ∆z = 0.01 m.
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Figure 3. Effect of the initial particle resolution Σ on the SPH numerical simulation of test T2.

In all four tests T1-T4, the solid boundary conditions needed for idealizing the seabed,
are discretized by a set of boundary particles that differ from the fluid particles. When a
fluid particle approaches the boundary, the density, and hence the pressure exerted by the
boundary particles, increase. This generates the necessary repulsive force on the water
particles.

Instead, the offshore boundary condition is treated as a dynamic boundary condi-
tion [90], i.e., the numerical wave paddle is composed of wall particles whose density
is computed with the continuity equation and pressure obtained from the equation of
state [72]. For both of the regular waves’ tests, the first order numerical wavemaker is
located at a distance of 0.5 m offshore on the side of section 76.

For the third test (T3), following the experimental setting by (Roeber [85] and Roeber
et al. [86]), the numerical flume was 45 m long, with an initial water depth of 1 m. The
fringing reef, whose slope was 1/5, was 5.1 m long and its toe was at a distance of 17 m from
the numerical wavemaker. The latter generated the solitary wave according to the Rayleigh
solitary wave generation theory; in this case, an initial particle distance of ∆x = ∆z = 0.02 m
with a total number of particles equal to 50,242.

In the last test (T4), following the experimental setting by Titov and Synolakis [87],
the numerical wave tank was 154.83 m long, with an initial water depth of 3.33 m. The toe
of the inclined beach was at 34.83 m from the piston, which was of the same type as that
described for the third case. The initial particle distance was ∆x = ∆z = 0.025 m, resulting
in a total number of 369,885 particles.

For all of the cases, the initial conditions are described by setting the velocities of
all the particles of the computational domain u = 0 at time t = 0. Moreover, the pressure
distribution is assumed to be hydrostatic at the beginning of the computation. In the SPH
computations, the free surface is easily and accurately tracked by the particles. To simplify,
a pressure equal to zero is given to each of the surface particles.

According to De Padova et al. [25], the ratio of the smoothing length h to the initial
particle spacing ∆x was maintained to a constant value of h/∆x = 1.5 for all four simulations
(T1-T4). Table 2 shows the main characteristics of the SPH simulations.
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Table 2. Main characteristics of the SPH simulations.

Test Time Simulation (s) ∆x(m) h/∆x Nparticles (−)

SPH_T1 100 0.01 1.5 62,892

SPH_T2 100 0.01 1.5 62.892

SPH_T3 13 0.02 1.5 50,242

SPH_T4 45 0.025 1.5 369,885

3.2.2. Eulerian Model Parameters

Among the most important parameters in the simulation of wave propagation, break-
ing and run-up using the non-hydrostatic D/C Galerkin model are the breaking waves
parameters. Wave overturning and small-scale processes related to wave breaking cannot
be reproduced in depth-averaged models, consequently some kind of closure is required.
Usually, this closure involves two steps. The first is a trigger mechanism to locate in space
and time the limits of breaking. The second is a mechanism that generates the dissipation
of energy in the model.

The dissipation of energy is accomplished by shifting locally to the depth-integrated
hydrostatic shallow water Equations, modeling breaking wave fronts as shocks. This
procedure was firstly presented by Smit et al. [91] as the hydrostatic front approximation
(HFA) method for the modeling of wave breaking.

For the trigger mechanism of wave breaking, two different criteria are used. The
first criterion is used for solitary waves and establish that wave breaking occurs when
ξ
h > 0.8 [92–94]. This criterion is referred to as the local criterion in Bacigaluppi et al. [95].
All of the elements containing a node with the wave breaking condition ξ

h > 0.8 are shifted

to the hydrostatic mode by making qn+1
b = 0, ∂qn+1

b
∂x = 0, ∂qn+1

b
∂y = 0 and wξ = wb = 0 in

the element.
The second criterion is used for regular waves and was first introduced by Kazolea

et al. (2014) [96] as the surface variation criterion. A node is flagged if
∂ξ
∂t√
g|h|

> G, with

G ∈ [0.3, 0.65] depending on the type of breaker. Flagged nodes are clustered to form a
breaking region. All of the elements containing a flagged node are shifted in the element

to hydrostatic mode by making qn+1
b = 0, ∂qn+1

b
∂x = 0, ∂qn+1

b
∂y = 0 and wξ = wb = 0. More

details regarding the implementation of this detection criterion can be found in Bacigaluppi
et al. (2019) [95].

The boundaries conditions in all tests are: at wall boundaries the gradients of water
elevations and the velocities normal to the boundary are set to zero; at open boundaries,
the water elevations are determined by a Sommerfeld radiation condition; at wave inflow
boundaries, the water elevations and velocities are calculated with the corresponding inflow
wave analytical formula; no boundary conditions are required for the non-hydrostatic
pressure.

In the simulation of tests T1 and T2, the experiments of De Serio and Mossa [84] were
replicated with a numerical domain of 32 m long and 0.24 m wide and the initial water
depth was 0.70 m. Square elements with sizes ∆x = ∆y = 0.04 m were considered, resulting
in 5607 nodes. The surface variation criterion was used as the trigger mechanism of wave
breaking. The parameter Gwas chosen to replicate the waves before and after the breaking
zone (consequently trying to match the total energy dissipation of wave breaking with the
HFA method).

In test T3, we analyzed the tests of Roeber [85] and Roeber et al. [86] with a numerical
domain of 45 m long and 0.2 m wide and a water depth of 1 m. Square elements with
∆x = ∆y = 0.05 m were used, leading to 4505 nodes. A Manning coefficient of n = 0.01 was
established to represent the finished concrete surface of the reef model. The local criterion
was utilized as the trigger mechanism of wave breaking.
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Finally, in test T4, the experimental setting of Titov and Synolakis [87] was reproduced
in a numerical domain of 220 m long and 2.4 m wide and a water depth of 3.33 m. Square
elements with sizes ∆x = ∆y = 0.4 m were considered, resulting in 3857 nodes. A Manning
coefficient n = 0.01 was used to define the bed surface roughness. The local criterion
was used to activate wave breaking. Table 3 shows the main characteristics of the non-
hydrostatic D/C Galerkin simulations.

Table 3. Main characteristics of the non-hydrostatic D/C Galerkin simulations.

TEST Time
Simulation (s) ∆x, ∆y (m) Wave Breaking

Criterion Nnodes(−)

D/C
Galerkin_T1 60 0.04

∂ξ
∂t√
g|h|

> 0.2 5607

D/C
Galerkin_T2 60 0.04

∂ξ
∂t√
g|h|

> 0.3 5607

D/C
Galerkin_T3 25 0.05 ξ

h > 0.8 4505

D/C
Galerkin_T4 40 0.4 ξ

h > 0.8 3857

4. Results and Performance Analysis

The efficiency and performance of both numerical approaches have been analysed in
this section. The numerical results have been compared with laboratory experiments by
De Serio and Mossa [84] in T1 and T2, by Roeber [85] and Roeber et al. [86] in T3 and Titov
and Synolakis [87] in T4.

4.1. Spilling/Plunging and Plunging Breaking Waves on a Plane Beach

Both numerical approaches reproduce the breaking waves quantitatively well in both
tests (T1 and T2). In fact, in the horizontal direction of the surf zone, the following zones
can be distinguished [97]. Initial wave deformation occurs in what has been termed the
shoaling zone (section 76–49), where wave profile is characterized by a rapid change in
shape. Subsequently, the wave reaches the breaking point in the outer zone (section 48–47)
originating an overturning jet whose strength depends on the type of breaker. In the inner
surf zone (section 45), the wave undergoes a gradual transformation into a turbulent bore,
until reaching the swash zone. Figure 4a,b show the snapshot of the free surface for both
the cases of a spilling/plunging (T1) and a plunging breaking wave (T2).
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Figure 4. Cont.
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Figure 4. DualSPHysics model: Snapshots of free surface and vorticity field for (a) spilling/plunging
breaking wave (T1) and (b) plunging breaking wave (T2).

As an example, in Figure 5a,b, both laboratory and numerical wave surface elevations,
at vertical sections 49, 48 and 45, have been plotted for T1 and T2.
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Figure 5. Computed and measured surface elevation for (a) spilling/plunging breaking wave (T1)
and (b) plunging breaking wave (T2).
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Table 4 shows the statistical analysis of the comparison between the two numerical
models with the experimental results in terms of the index IW proposed by Wilmott [98].

IW = 1− ∑N
k=1
(
XCk − Xmk

)2

∑N
k=1
[∣∣XCk − Xm

∣∣+ ∣∣Xmk − Xm
∣∣]2 (36)

where Xc and Xm are the modeled and measured values, respectively, while the bar denotes
the average of the modeled and measured values. It takes into account the relative error
among experimental and output values, and it will exhibit values closer to one for higher
levels of accordance.

Table 4. Statistical analysis of the comparison of the free surface for T1 and T2.

IW

Sect. 49 48 45

SPH_T1 0.92 0.90 0.89

D/C Galerkin_T1 0.82 0.78 0.72

SPH_T2 0.95 0.89 0.90

D/C Galerkin_T2 0.91 0.85 0.75

Both codes have been shown to be robust, efficient and reliable and a good agreement
has been observed for all sections for the wave elevations. However, in the shallow waters
(sections 49–48), the computed Galerkin method results appear to slightly underpredict
the wave crest and slightly overestimate the experimental values in the trough. After
the breaking wave (section 45), a slight overestimate of the crest data is observed for
the Galerkin method in T1 and T2. The statistical parameter in Table 4 confirms these
conclusions.

Furthermore, skewness [99], a measure of crest-trough shape, has been computed
and shown in Figure 6a,b for both tests (T1–T2). The trend of wave skewness increases
as the wave shoals and breaks (sections 48–49) and decreases near the shoreline (sections
47–45). Indeed, for both experimental and computed data, the trend generally becomes
more pronounced as the water depth decreases, with higher crests and shallower troughs
evident. However, the SPH model shows better results than the Galerkin model in terms of
the wave shape. The reason for the underestimation of the breaking waves in the Galerkin
model is that the HFA method requires high vertical resolution for capturing the hydrostatic
shock of the series of regular breaking waves; high vertical resolution that is obviously not
present in depth-averaged models. Smit et al. [91] indicated that a multilayer version of a
non-hydrostatic shallow water model would require at least 20 layers to obtain a correct
solution of wave height using the HFA method. Similar underestimations are observed
in other works using the HFA method in depth-averaged models for the simulation of a
breaking wave series [79,95,100,101].
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Figure 6. Comparison of experimental and numerical skewness of surface wave elevation for: (a)
spilling/plunging breaking wave (T1) and (b) plunging breaking wave (T2).

4.2. Solitary Waves Propagation

Both numerical approaches reproduce the principal processes well in both two tests
(T3 and T4); in fact, in test T3, as shown by Roeber (2010) [85] and Roeber et al. (2010) [86],
the wave evolves from subcritical flow to supercritical flow over the reef edge at x = 22 m,
collapses at x = 23 m, and, subsequently, rushes over the initially dry reef flat (Figure 7).
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Figure 7. Comparison of experimental and numerical surface profiles of a solitary wave over a fringing reef (T3).

Additionally, in T4, both of the numerical approaches reproduce the wave breaking
and run-up processes well. In fact, both of the numerical results confirm the experimen-
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tal findings by Titov and Synolakis [87]; in fact, the breaking of waves occurs between
t(g/h)1/2 = 20 and 25 and the maximum run-up was observed at t(g/h)1/2 = 45 (Figure 8).

Figure 8. Comparison of experimental and numerical surface profiles of a solitary wave run-up on a plane beach (T4).
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4.3. Performance Analysis

Both codes have been shown to be robust, efficient and reliable in simulating the
analysed phenomena. However, in terms of computing cost, the Eulerian method was
faster than the Lagrangian method. In fact, tracking sufficient number of particles and
analyzing them in the Lagrangian approach required more time than the Eulerian iterations.

With the large numbers of neighboring particle interactions and the time step re-
stricted by the Courant condition for weakly compressible flow, SPH is computationally
demanding.

However, in this work the power computing of GPUs was used to accelerate Du-
alSPHysics when compared with the performance achieved using a classic version of
SPHysics code [25].

This important acceleration of the code using the new GPU technology can be observed
in Figure 9 where the runtime of the hardware accelerated DualSPHysics code is shown by
comparing its performance against the classic version of SPHysics code using a single core.
In particular, in De Padova et al. [25], the open-source code SPHysics [23], was executed
up to t = 25 s from the beginning for test T1 and T2 and it cost about 40 h of CPU time
using a personal computer (CPU 2.66 GHz and RAM 4.0 GMB PC). An initial particle
distance of ∆x = ∆z 0.022 m was chosen for these two tests, resulting in a total number of
30,000 particles.

Figure 9. Comparison of runtime in T1 and T2.

In this study, with an initial particle distance of ∆x = ∆z = 0.01 m and a total number
of 62,892 particles, the hardware accelerated smoothed particle hydrodynamics code Dual-
SPHysics was executed up to t = 100 s from the beginning and cost about 12 h of CPU time
using a personal computer (CPU 2.70 GHz and RAM 384 GB PC, equipped with a NVIDIA
Quadro K2000 GPU). Furthermore, with an initial particle distance of ∆x = ∆z 0.003 m and
a total number of 389,000 particles, the hardware accelerated smoothed particle hydro-
dynamics code DualSPHysics was executed up to t = 100 s from the beginning and cost
about 225 h of CPU time using a personal computer (CPU 2.70 GHz and RAM 384 GB PC,
equipped with a NVIDIA Quadro K2000 GPU).

Instead, the discontinuous Galerkin FEM was executed up to t = 100 s from the
beginning and cost about 9.75 h of CPU time using a personal computer (CPU 2.66 GHz
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and RAM 4.0 GMB PC). Square elements with sizes ∆x = ∆y = 0.04 m were chosen for these
two tests, resulting in a total number of 5607 nodes.

5. Conclusions

The most widely used CFD approaches, namely the Eulerian and Lagrangian methods,
are characterized by specific advantages and disadvantages. The most relevant advantages
of Lagrangian approaches over Eulerian methods are the exact conservation of mass and
momentum and the meshless properties. Moreover, the Lagrangian method gives detailed
information of individual particles that can be crucial in many applications. In terms of
computing cost, the Eulerian method was faster than the Lagrangian method. In fact,
tracking a sufficient number of particles and analyzing them in the Lagrangian approach
required more time than the Eulerian iterations.

New research challenges on Computational Fluid Dynamics (CFD) are constantly
on-going; in particular, recently, research has focused on coupling the Eulerian–Lagrangian
techniques to combine the advantages of the individual models in a single model, thus
increasing the accuracy, efficiency and regime of validity.

The present study dealt with the comparison of the Lagrangian and Eulerian ap-
proaches in the simulation of regular breaking waves on a plane slope and solitary waves
transformation, breaking and run-up. The performance of the numerical models was
evaluated in accordance with experimental data.

Both Eulerian and Lagrangian approaches were capable of simulating the analysed
phenomena. However, the Lagrangian method showed more accuracy to reproduce the
wave shape, both in deep waters and shoaling zones right up to the breaking region.
Eulerian models cannot reproduce wave overturning exactly (e.g., only one water surface
elevation value is permitted). Additionally, when using the HFA method in the case
of regular waves, a high vertical resolution multilayer model is required to capture the
hydrostatic shock of a breaking wave [91].

For the tests T3–T4, the numerical results demonstrated that the Eulerian and La-
grangian methods have similar accuracy on predicting the solitary wave transformation,
breaking and run-up processes.

In this study, the hardware accelerated DualSPHysics code on a GPU was used; the
new DualSPHysics code is a user-friendly platform designed to encourage researchers
to use the SPH technique to investigate novel and real CFD problems that are beyond
the scope of classical models. In recent years, DualSPHysics code has been shown to be
accurate for simulating coastal engineering problems, with a continuous improvement in
efficiency thanks to the exploitation of hardware such as GPUs for scientific computing.

In this study, this important acceleration of the code using the new GPU technology
has been observed by comparing its performance against the classic version of SPHysics
code using a single core.
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