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ABSTRACT 

 
By means of a recently customary nonparametric method future climate analogues were predictable for West South 
American capital cities. The nonparametric scheme showed in this research for identifying climate analogues can 
be applied for impact assessments under a changing climate. MRI-AGCM3.2H with a horizontal resolution of 60 
km, three convection schemes, four sea surface temperature distributions, and two initial conditions and under 
scenario A1B of the Special Report on Emissions Scenarios were used. The total ensemble scope was 24, with a 
simulation period of 25 years. Utmost of the future analogues are at lower latitudes than their target cities. Estimated 
seasonal variations in surface air temperature and rainfall in Santiago de Chile City look similar to the present-day 
climate of Cape Town, located in South Africa and for La Paz City a climate analogue is found at Oruro in Bolivia.  
 
Keywords: Climate analogue, climate change, surface air temperature; rainfall; nonparametric method; West South 

America. 
 
 

1 INTRODUCTION  

Climate analogues method gets how to connect climate at an objective point to regular community, politicians, 
sponsors, and to experts who study biosciences and environmental resources.  For example, recognizing spatial 
and temporal analogues places or areas making available understandings how biota and crops are vulnerability to 
climate change, is providing for the climate analogues technique (Leibing et al., 2016). Furthermore, analogues 
scheme based on climatic features gives visions on regions with present climate environments look like future or 
past surroundings in a different location (e.g., Williams et al., 2007; Ramírez-Villegas et al., 2011). Numerous 
regions have been studied using it such as Central America (Pinzon et al., 2017), Japan (Ishizaki et al., 2012), 
Australia (Webb et al., 2013; Nakaegawa et al., 2017), worldwide (Arnbjerg-Nielsen et al., 2015; Soteriades et al., 
2017), nonetheless not for West South America. On the other hand, Hibino et al. (2015) demonstrated probabilistic 
terrestrial scatterings of climate analogues by integrating uncertainties from greenhouse gases emission scenarios, 
climate model itself, and internal variability in order to overcome the deterministic-ill issue.  Local forcing disturbs 
the climatological behavior in South America which includes tropical subtropical and extratropical landscapes. 
Andes chain is a significant western coast feature described by a thin barrier routing the stream in the central part 
of the mainland. The seasonal precipitation at west of the Andes is defined by the sea surface temperature (SST) 
over Pacific Ocean (Solman, 2013). Moreover, in this zone, hydroclimatic conditions are determinate by the 
temperature relations among mainland and the oceans (Nakaegawa et al., 2014c).  

The agrarian area and food security were affected and producing an economic and social impact on Latin 
America because both at the same time, El Niño (ENSO), the Pacific Decadal Oscillation and the hottest 
temperature time on Earth appear on the last 3 years (Martinez et al., 2017).  In addition, the Atlantic and the Pacific 
oceans cause the foremost climate variabilities over the South America (Ramos da Silva Hass, 2016). 

Precipitation is seems the most leading hydroclimatological component (e.g., Taylor and Alfaro, 2005; 
Nakaegawa et al., 2014b).  Likewise, heterogeneous demographic group migration is most conditioned by exposure 
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to monthly temperature shocks comparative to monthly rainfall shocks and regular changes in climate over many-
year times (Thiede et al., 2016).  

Further, species are extra exposed to minor climate changes (Mora et al., 2013). Climate change is also thought 
to produce decays in the abundance of B. bellicosus a bumblebee threatened in South America (Martins et al., 
2014). 

According to Pugh (2016), a significant percent of the existing worldwide crop zones for wheat, maize and rice, 
is located in areas in which yields are susceptible to climate change.  As said by Giorgi (2006), some regions should 
be considered an extremely subtle to the effects due of reduced rainfall and strengthening of rainfall changeability 
(Nakaegawa et al., 2014a). For some countries drastic economic impacts are related to climate change (Fábrega 
et al., 2013).  

 
All of these influences of climate changes in West South America pinpoint in a simply comprehensible manner 

the significance of in what way locally future climate fluctuates under a worldwide warming.  The climate analogues 
in the current investigation were found by recognizing a city with a present-day climate alike to that projected for a 
target city in the future. 

The locations of the future climate analogues for 6 West South American capital cities were recognized by means 
of a nonparametric method by Hibino et al. (2015). Twenty-four simulations of the Meteorological Research Institute-
Atmospheric General Circulation Model (MRI-AGCM; Mizuta et al., 2012) were carried out for present-day and 
future climates to reproduce uncertainties in climate projections. 

 
 
2   METHODOLOGY 

 
Climate Analogues  

Making use of the 600-year modeled data and a novel scheme, the positions of the climate analogues, where 

present-day climates are similar to the future climates of the 6 target capitals on a monthly mean time-scale, can be 
recognized in a probabilistic way. The metric established was the root mean square difference (√∆) of monthly-mean 
SAT and rainfall between the present-day and future climates. Using the equations (1), (2), and this metric the 
similarity score was computed. The similarity score accounts for uncertainties in climate analogues derived from 
future climate projections. Relating the monthly time series of SAT and rainfall for each sample the similarity of 
climates is evaluated for each year. 
 

∆𝛽 (𝑙, 𝑙𝑡𝑎𝑟𝑔𝑒𝑡, 𝑞) = √
1

µ
∑ (𝛽𝑖

𝑜𝑏𝑠(𝑙, 𝑞) − 〈𝛽𝑖
𝑓
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Primary, the future climate of the six capitals in South America was projected. Secondly, a similarity score that 

associates apiece target city with locations around the world was quantified and the locations with maximum 
similarity scores, both worldwide and within the American continents were selected.  
 
Observations 

The present observation period was arrangement to be the equivalent as that of the current climate simulations. 

As a result of its constraint of observation dataset climate analogues are recognized with 0.5º horizontal resolution. 
The cities themselves are not represented, but a 0.5º grid box which incorporated both target cities and climate 
analogue cities. 
 
Ensemble simulations 

We achieved all future climate simulations for the late 21st century (2075-2099, 25 years) using scenario A1B 
(Intergovernmental Panel on Climate Change (IPCC), 2000) from the Special Report on Emissions Scenarios 
(SRES) in the MRI-AGCM3.2H model, which has a grid spacing of about 60 km. Comparative to the present day 
(1979-2003, 25 years), global mean sea surface temperature (SST) is projected to rise 2.17˚C by the late 21st 
century.  24 ensemble tests were conducted casing three convection schemes ((YS; Yoshimura et al., 2015); (AS; 
Randall and Pan, 1993), and (KF; Kain and Fritsch, 1993)), four SST distributions and two initial conditions, each 
with a 25-year integration period, yielding 600 years of climate projections.  
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Target cities and period 

 
Six target capitals in West South America for climate analogues were chosen by population (in Table I and 

Figure 1). As it was mentioned in the introduction section these present-day climates are affected by the Pacific and 
Atlantic oceans, and Central America, ENSO among others. The future climate simulation (2075 to 2099) is similar 
period used for future climate analogues. 
 
Table I. The six target cities in West South America for which climate analogues were determined in the present study. Their 

locations are shown in Figure 1 

Capital City Country Latitude Longitude Altitude 

Caracas Venezuela 10.51 -66.92 934.13 

Bogotá Colombia 4.60 -74.08 2605.21 

Quito Ecuador -0.21 -78.50 2819.54 

Lima Peru -12.05 -77.03 160.94 

Sucre Bolivia  -16.50 -68.13 3651.43 

Santiago Chile -33.44 -70.65 569.82 

 

 
 

Figure 1. Six target cities in West South America. The color scale shows elevation above sea level (m). More information about each city is 

listed in Table I 

                                                                             

4 RESULTS 

 
Global search 

Table 2 gathers in-region and global search results. The climate analogue for La Paz as a target is located 
inside South America, in City, Oruro, Bolivia. La Paz presented the maximum annual change about 3.0 ˚C and being 
the maximum monthly changes in January.   Graphically, lines and vertical/horizontal bars/diamonds were used to 
show present-day and future-day climates and seasonal cycle of surface air temperature and rain fall respectively 
for La Paz capital of Bolivia and its climate analogue (Figure 2). 
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Total, SAT, and rainfall similarity scores for Santiago de Chile were 0.401, 0.794, 0.928 respectively (Figure 
3a, 3b, 3c). We found climate analogue cities with low-medium similarity scores outside West South America for 
Santiago de Chile (Chile) in Cape Town (South Africa), Australia.  Also, they were inside South America (Figure 
3a).  

Surface air temperature in Santiago de Chile was projected to increase by 1.5°C in the future climate and 
precipitation was expected to decline. Because the climate analogues had to have both an alike seasonal cycle and 
a comparable augmentation of surface air temperature in the future climate (Figure 3b), high temperature similarity 
scores were limited to a very minor area alongside the south-eastern of South Africa, from Santiago  
 

 

Table 2. Analogue city for each target city in global. See Figure 4 for geographical distribution. Note that analogue city 

represents a 0.5˚ grid box but not the exact location of the analogue city 

 

Analogue city 

Target city Global search 

 City  Country 

Caracas Barcelona  Venezuela 

Bogotá Bujumbura  Burundi 

Quito Kigari  Rwanda 

Lima Namibe  Angola 

La Paz Oruro  Bolivia 

Santiago de Chile Cape Town  South Africa 

 
 
de Chile. In height precipitation similarity scores were distributed along all over the world and mainly South Africa, 
east Europe, west North America and west South America (Figure 3c). 
 

 
Figure 2. Seasonal cycle of surface air temperature (lines) and rainfall (diamonds and horizontal bars) in La Paz, Bolivia. (b) Blue lines and 
symbols represent the future climatological monthly mean values in the target city, while red represents at current values fo r the climate analogue 

city in 1979. Gray represents the 600 realizations of the future climate in the target city produced using multi-ensemble simulations of MRI-
AGCM3.2H 

 
Figure 4 shows the best climate analogue cities for the six target capitals based on a global and inside region 

search. Brown arrows indicate similarity scores from 0.1 to 0.3. All cities have brown arrows. These distributions 
also reflect the uncertainties in the future climate projections due to the convection scheme, the projected SSTs 
used, and the internal variability of the climate system.  
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Figure 3. Geographical distribution of normalized similarity scores for climate analogue regions of Santiago de Chile: (a) integrated, (b) surface 

air temperature, and (c) precipitation. The scores are normalized by the highest scores of 0.401, 0.794, and 0.928, respectively. 
 

 
 

Figure 4. The optimal climate analogue cities for the six target capitals based on a global search: The starting point and arrowhead of each 
vector represent a target capital and its climate analogue city, respectively. The color of each arrow indicates the locations’ similarity score: 0.1 

to 0.3 by brown 
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5 DISCUSSION 

 
Climate zones 

In the global search, non-zero integrated similarity scores were dispersed in distinct areas of some continents.  
As a first estimate the climate analogue for a target city at any given future year between the current year and the 
late 21st century instinctively should be placed lengthwise the vector from the target city to the analogue city.  This 
latter could be considered because the spatial patterns of future changes in SAT and precipitation continue the 
identical over time (Nakaegawa et al., 2017). 
 
Temporal evolution of location of analogue city 

It is doubtful that the time development of the in-country climate analogues for all target cities can be 
approximated as a dividing point on the arrows in Figures 4. Indeed, climate zones is zonally distributed according 
to the latitude as first-order approximation. However, the climate zones are defined only in land areas. 
 
6 CONCLUSIONS 

This research involved two different initial conditions as a group of simulations, multi-ensemble simulations 
and three convection schemes and four SST datasets (Nakaegawa et al., 2017).  Point out that these sets or initial 
conditions may impact the uncertainties in climate analogue with unlike amounts. The global search found two 
climate analogue cities in Central South America, and the other four in Central and South Africa. All climate 
analogue city classified get into the uncertainties of the future climate projections. 
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