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Abstract: To simulate the current climate, a 20-year integration of a non-hydrostatic regional climate
model (NHRCM) with grid spacing of 5 and 2 km (NHRCM05 and NHRCM02, respectively) was
nested within the AGCM. The three models did a similarly good job of simulating surface air
temperature, and the spatial horizontal resolution did not affect these statistics. NHRCM02 did a
good job of reproducing seasonal variations in surface air temperature. NHRCM05 overestimated
annual mean precipitation in the western part of Panama and eastern part of the Pacific Ocean.
NHRCM05 is responsible for this overestimation because it is not seen in MRI-AGCM. NHRCM02
simulated annual mean precipitation better than NHRCM05, probably due to a convection-permitting
model without a convection scheme, such as the Kain and Fritsch scheme. Therefore, the finer
horizontal resolution of NHRCM02 did a better job of replicating the current climatological mean
geographical distributions and seasonal changes of surface air temperature and precipitation.

Keywords: MRI-AGCM; Panama; precipitation; NHRCM; surface air temperature; present climate;
nesting method; simulations; mean square error

1. Introduction

Scientists and policymakers alike are requesting high-resolution estimates of global
warming and its consequences in order to map out the changes and consequences in greater
detail. Dynamical downscaling of global climate models is a valuable strategy for generat-
ing comprehensive estimates of regional climate changes owing to global warming [1,2].
As an example, previous works projected the future climate in and around Panama with a
global climate model (GCM) with grid spacing of 20 km [3–7].

Even with fine grid spacing, however, this model did not adequately replicate extreme
events and did not resolve the main mountain ranges or river basins, all of which must
be depicted if climate projections are to be relevant for water resource and flood planning,
agriculture, and other applications. To overcome these issues, a non-hydrostatic regional
climate model (NHRCM) was used in order to simulate current climate in Panama.

Only a few studies on high-resolution models (e.g., [8–10]) have been published in
Central America. Climate change projections for Central America and Mexico were initially
performed with a regional climate model [8]. Dynamical downscaling with horizonal
resolution of 27, 9, and 3 km over Panama using the Weather Research and Forecasting
(WRF) model was performed to forecast one-day precipitation with different physical
parameterizations [10]. This is the only study on forecasting for Panama, but it is not a
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study on a climate time-scale. In this study, we nested our NHRCM within the results of
AGCM’s current climate experiment, integrated it for all four seasons over a 20-year period
from 1980 to 1999, and analyzed its performance to make the model useful for climate
studies surrounding Panama.

2. Materials and Methods
2.1. Experiment Design

This study used a multiple nesting approach, as shown in Figure 1a. The lateral bound-
ary data on the outskirts were derived from current climate simulations, employing an
AGCM with a grid spacing of 20 km [11]. The AGCM is based on the Japan Meteorological
Agency’s (JMA) previous operational model for numerical weather prediction [12]. The
integration period was 1979 to 2003. This simulation was designed to perform dynamical
downscaling with accurate current climate replication to avoid garbage-in-garbage-out,
since coupled GCMs replicate current climate with distinct and/or systematic biases, espe-
cially at regional scale. The AGCM is externally forced with observation-based time series
of sea surface temperature, sea ice concentration, greenhouse gas concentration, sulfate
aerosol concentration, ozone gas concentration, and volcanic aerosol concentration. The
AGCM does a good job of replicating the current climate in Central America [4] and in
most of the world [13].
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Figure 1. (a) Target area for current climate simulations. Inner domain (colored) represents area for NHRCM02, outer
domain (grayscale) represents area for NHRCM05. (b) Eight ground-based precipitations stations observed by Panama
Canal Authority.

NHRCMs with grid spacing of 5 and 2 km (NHRCM05 and NHRCM02, respectively)
were nested within the AGCM. The AGCM lacks cloud water, cloud ice, and other cloud
characteristic variables, so both NHRCM05 and NHRCM02 were used to produce them for
the lateral border of the two smaller domains with 5 and 2 km grid spacing. Calculations
were simplified by skewing the inner domain, which still spans almost the entire Panama
Isthmus. The setup of NHRCM employed in this study can be found in Table 1. NHRCM
was externally forced with observation-based time series of sea surface temperature and
greenhouse gas concentration. In this work, the time slice integration method was applied.
Each integration took place between 1 December and 4 December of the following year.
The first month of results was discarded in favor of spin-up. Since 1980, this cycle has
repeatedly occurred 20 times. Comparisons of climate between NHRCM05 and NHRCM02
are the focus in this study; comparisons between NHRCMs and MRI-AGCM are provided
in the Figure 1a.
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Table 1. Model specifications chosen in this study. Minimal details are given in main text, and full details are described in references.

Model MRI-AGCM NHRCM

Grid space 20 km 5 km 2 km
Boundary condition - MRI-AGCM 20 km

Spectral nudging - Applied Not applied

Convection scheme Yoshimura et al. (2018) [14] Kain and Fritsch’s
scheme (1990) [15] Not applied

Boundary layer Mellor-Yamada (MY; 1974) Level2
[16] MYNN2.5; Nakanishi and Niino 2004 [17]

Radiation process JMA (2007) [18] Yabu et al. (2005) [19] and
Kitagawa (2000) [20]

Land surface model SiB ver.0919 [21] iSiB [22]
Sea surface temperatures and sea ice COBE SST (1◦ × 1◦) [23]

External atmospheric forcing Greenhouse gases, sulfur and
volcanic aerosol, and ozone gases Greenhouse gases

2.2. Surface Air Temperature and CRU TS v4.05 Data

The The gridded Climatic Research Unit (CRU) Time-series (TS) data version 4.05
dataset was used, which is the fourth version of the gridded product established by the
Climate Research Unit of the University of East Anglia [24]. It includes a number of
variables (precipitation, surface air temperature, mean temperature, etc.) compiled in a
global (excluding Antarctica) 0.5 × 0.5 grid (56 km) from 1901 to 2017, obtained by the
interpolation of monthly data collected from the World Meteorological Organization’s
archives.

2.3. Precipitation Data

For the observation dataset, we used GSMaP Gauge v.5 global satellite mapping of
precipitation data [25,26] (https://sharaku.eorc.jaxa.jp/GSMaP/guide.html#09; accessed
on 2 February 2020). Ground truth data are used to adjust the satellite data bias in this
dataset. It has a time resolution of one hour and a spatial resolution of 0.1◦. For the target
season, this dataset is only accessible for the period from 2000 to 2010. There are differences
in the reference period between the simulations and GSMaP. Monthly precipitation in CRU
TS with a 0.5 × 0.5 grid was used to see if there was an issue with the reference period
difference.

Eight ground-based precipitation stations observed by the Panama Canal Authority
were also used (Figure 1b). The eight stations are located in and around the upper Chagres
River Basin, a part of the Panama Canal Basin [27], which is a very important area for
water resources of canal operations; the coordinates of the observation stations range from
79.40◦ E to 79.51◦ E and from 9.19◦ N to 9.45◦ N, corresponding to about a single grid box
of MRI-AGCM. The elevation ranges from 110 to 2100 m.

3. Results and Discussion
3.1. Surface Air Temperature

The models were validated by comparing the CRU to the simulations averaged over
CRU grids on land. Figure 2 depicts the differences in annual mean climatological surface
air temperature between the simulation and observations. Except for several grids, the
bias of the surface air temperature simulated with NHRCM02 lies between −1 and 1 ◦C
(Figure 2d). A large negative bias of −3 ◦C was found in the mountainous terrain of the
western border. NHRCM05 did a good job of simulating surface air temperature, although
the biases in NHRCM05 are large compared to those in NHRCM (Figure 2c).

https://sharaku.eorc.jaxa.jp/GSMaP/guide.html#09
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Figure 2. Geographic evaluation of 20-year mean annual surface air temperature derived from (a) CRU
(CRU_TS4.05), and biases in (b) MRI-AGCM, (c) NHRCM05, and (d) NHRCM02. Values in biases are
difference between simulations and CRU observations. See Table 2 for quantitative evaluation.

As the grid size becomes finer, the NHRCMs have negative biases, opposite to those
of MRI-AGCM. NHRCM02 has small biases that are geographically distributed in Panama,
and the area average over the country is minimal (Table 2). For the 20-year mean annual
surface air temperature, the spatial correlation between the NHRCMs and CRU was 0.90
and 0.92 for 5 and 2 km grid spacing, respectively. The root mean square errors (RMSEs) for
NHRCMs are almost the same. Therefore, NHRCM02 has better performance in simulating
surface air temperature, and the spatial horizontal resolution contributes slightly to the
replicability of geographic distribution of surface air temperature.

Table 2. Quantitative evaluation of 20-year mean annual surface air temperature averaged over
Panama in three simulations against observation. See Figure 2 for geographic evaluation.

Bias (◦C) RMSE (◦C) Correlation

AGCM 0.55 1.05 0.93
NHRCM05 −0.66 1.09 0.90
NHRCM02 −0.51 1.08 0.92

NHRCM02 did a good job of reproducing seasonal variations in surface air temper-
ature (see Figure 3). The NHRCMs had cool biases in the rainy season, from May to
November, in comparison to CRU, whereas in the dry season, from January to March, the
simulated surface air temperatures of NHRCMs were almost the same as those of CRU.
All models accurately simulated maximum mean monthly surface air temperatures at the
end of the dry season, but with a 1-month behind/advance maximum, while the minimum
surface air temperature in NHRCMs occurred in October, with two months advance, in
comparison to CRU.
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Figure 3. Seasonal changes in 20-year mean monthly surface air temperatures averaged over grids
with altitude below 1000 m. Black, gray, blue, and red lines represent observations, MRI-AGCM,
NHRCM05, and NHRCM02, respectively.

For seasonal changes in 20-year mean surface air temperature, NHRCM02 had a
smaller bias and RMSE and higher temporal correlation than NHRCM05 (Table 3). The
correlation between model simulation and CRU was 0.74 and 0.83 for NHRCM05 and
NHRCM02, respectively, and NHRCM02 did a better job at simulating seasonal changes
than NHRCM05.

Table 3. Same as in Table 2 but for seasonal changes in 20-year mean monthly surface air temperature
in three simulations against observation. See Figure 3 for seasonal changes.

Bias (◦C) RMSE (◦C) Correlation

AGCM 0.55 0.66 0.87
NHRCM05 −0.66 0.76 0.74
NHRCM02 −0.51 0.61 0.83

MRI-AGCM showed large negative biases in many grids, especially in the western
border and the Caribbean Sea (Figure 2b). MRI-AGCM’s average annual mean surface
air temperature biases over Panama were negative by 0.55 ◦C (Table 2). As the grid
size becomes finer, NHRCMs have negative biases, opposite to MRI-AGCM. The three
models show very small varieties ranging from 1.05 to 1.09 ◦C. The spatial correlation for
MRI-AGCM was slightly high compared to NHRCM02. The range of monthly surface air
temperature of NHRCMs was better than that of MRI-AGCM (Figure 3). MRI-AGCM had
the best temporal correlation of seasonal changes in the three models (Table 3), although
the difference in the correlation coefficients is not statistically significant. Therefore, the
nested NHRCMs reproduced the spatial details of surface air temperature as well as MRI-
AGCM did. Different horizontal resolutions of datasets of observations and models means
different representative altitudes. The altitude–surface air temperature dependence may
affect the biases.

3.2. Precipitation

The models were validated by comparing the GSMaP to the simulations averaged
over the GSMaP grid. The differences in annual mean climatological precipitation between
simulations and observations are provided in Figure 4. NHRCM05 overestimated annual
mean precipitation in the western part of Panama and eastern part of the Pacific Ocean side.
Very large biases, exceeding a ratio of 3, were seen in the western part of the Caribbean
Sea. NHRCM05 was responsible for this overestimation, as it was not seen in MRI-AGCM.
Precipitation in NHRCM05 is understood as high sensitivity to mountainous terrains [28].
NHRCM02 simulated annual mean precipitation better than NHRCM05, probably due to
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a convection-permitting model without a convection scheme, such as Kain and Fritsch’s
scheme. The underestimation is seen in the eastern part of the Azuero Peninsula, the driest
region in Panama.
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Figure 4. Same as in Figure 2 but for 20-year mean annual precipitation derived from (a) GSMaP v5,
and biases in (b) MRI-AGCM, (c) NHRCM05, and (d) NHRCM02. Bias values are ratios of simulation
to observation of GSMaP. See Table 4 for quantitative evaluation.

The finer version of NHRCM, NHRCM02, had smaller absolute bias and RMSE
and higher spatial correlation than NHRCM05 (Table 4). These results are consistent
with the fact that orographic precipitation is generally simulated in a model with a finer
horizontal resolution.

Table 4. Same as in Table 2 but for quantitative evaluation of 20-year mean annual precipitation. See
Figure 4 for geographic evaluation.

Bias (mm/Month) RMSE (mm/Month) Correlation

AGCM −44.9 95.8 0.40
NHRCM05 127.5 253.1 0.33
NHRCM02 4.0 131.5 0.38

Figure 5 shows the seasonal changes in precipitation in Panama. The two models
simulated similar seasonal changes, except for the period October to February. There are
three monthly precipitation stages: about 470 mm/month from May to August, about
410 mm/month from September to November, and dry conditions or less precipitation
from December to April. The seasonal changes in Panama were fairly well represented
by NHRCM02 (Figure 5), but the second stage was not. NHRCM05 overestimated pre-
cipitation, especially in the second and the first half of the second stages. NHRCM02
also overestimated precipitation in the same period because it used the lateral boundary
simulated in NHRCM05.
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vations.

A quantitative evaluation of seasonal changes is tabulated in Table 5. The biases are
the same as in Table 4, since they do not vary when spatial or temporal means are computed
on an annual time scale. Although NHRCMs are nested in the lateral boundary conditions
of MRI-AGCM, they have opposite signs in the biases. NHRCM05 has larger RMSE than
NHRCM02. The temporal correlation between NHRCMs and CRU was 0.92 for NHRCM05
and 0.85 for NHRCM02.

Table 5. Same as in Table 3 but for quantitative evaluation of seasonal changes of 20-year mean
monthly precipitation in three simulations against observations. See Figure 5 for seasonal changes.

Bias (mm/Month) RMSE (mm/Month) Correlation

AGCM −44.86 77.14 0.95
NHRCM05 127.52 151.10 0.92
NHRCM02 4.04 95.03 0.85

Scatter plots of annual precipitation totals of the three models and GSMaP are de-
picted in Figure 6. The range of annual precipitation is confined between about 200
and 500 mm/month, while for NHRCM02 the range is widely distributed between 50
and 1000 mm/month. NHRCM05 only simulated about 1400 mm/month in the three
grids. These values obviously seem to be overestimated, since the maximum simulated
in NHRCM02 is about 1100 mm/month and that in GSMaP is about 480 mm/month.
The seasonal variations of monthly climatological precipitation in NHRCM05 resemble
those of the observations but with larger amounts. The time series of daily precipitation
always show large amounts of precipitation, which contributes to the overestimations, but
little event-specific heavy precipitation with outlier amounts is seen. The outlier of about
1400 mm/month in NHRCM05 is not an implausible value, and the so-called gridpoint
storm on a sub-daily time scale [29] may have affected the overestimations and is a chal-
lenging study relevant to extreme precipitation events. Therefore, the higher horizontal
resolution of 2 km and the convection-permitting model without a convection scheme is
responsible for the low maximum simulated in NHRCM02.
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The area in and around the upper Chagres River Basin, a part of the Panama Canal
Basin (Figure 1b), was selected to evaluate the capability of NHRCM02 to simulate precipita-
tion over complex terrain, since it has complex topography with elevation ranging from 110
to 2100 m. NHRCM02 well simulated the spatial pattern of precipitation, while NHRCM05
did not (Figure 7). The spatial correlation coefficient of precipitation in NHRCM02 and
NHRCM05 with ground-based stations is 0.76 and −0.95, respectively. The negative cor-
relation coefficient of NHRCM05 suggests that less than 5 km scale topography strongly
affects local precipitation there. The size of the basin corresponds to that of a grid box of
MRI-AGCM, and MRI-AGCM cannot capture the spatial pattern of precipitation in the
basin. GSMaP has a correlation of 0.4, but the absolute precipitation is almost the same
at the eight stations due to 0.1◦ horizontal resolution. This shows the benefit of the high
horizontal resolution of NHRCM02.
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observations, GSMaP, NHRCM02, and NHRCM05.

Overestimation at Vistamares in NHRCM02 is probably due to the complexity of the
topography, which cannot be represented even at 2 km since the maximum and minimum
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annual precipitation in the eight grids surrounding Vistamares varies from about 2900 to
5000 mm. It may be enhanced due to climatological time-scale gridpoint storms fixed with
the complexity of the topography.

MRI-AGCM has a smaller bias than NHRCM05, although NHRCM05 has finer hor-
izontal resolution and uses the lateral boundary conditions obtained from MRI-AGCM
(Figure 4). MRI-AGCM’s annual precipitation biases averaged over Panama were negative
at −44.9 mm/year and the smallest of the three models (Table 4). The spatial correlations
of MRI-AGCM and NHRCM02 were similar and higher than that of NHRCM05. The
seasonal changes in Panama in MRI-AGMC were similar to those in NHRCM02 (Figure 5).
The temporal correlation between MRI-AGCM and CRU was 0.95 for AGCM, the highest
of the three models (Table 5). The range of annual precipitation amount was smaller for
MRI-AGCM than NHRCMs but larger than GSMaP (Figure 6). Only NHRCM02 replicated
the small-scale precipitation distribution in the complex terrain (Figure 7). Therefore,
NHRCM02 reproduced many characteristics of precipitation as well as MRI-AGCM did.

3.3. Uncertainty in Precipitation Dataset

There are uncertainties in various precipitation datasets [30]. The annual climatological
precipitation in Panama varies from 2501 to 2924 mm/year [31]. GSMaP used in this study
showed the largest annual climatological precipitation of 3185 mm/year. The range of
annual precipitation is large, and the choice of dataset affects the reproducibility. The
biases in NHRCMs become larger than those shown in Tables 4 and 5 when another dataset
is used.

The geographic distribution of precipitation seems too smooth (Figure 4a) when we
consider the topography in Panama (Figure 1), because orographic precipitation produces
small-scale distribution. This is primarily the horizontal resolution of GSMaP. The spatial
correlation of NHRCMs will be higher than that of MRI-AGCM when a precipitation
dataset with a horizontal resolution higher than GSMaP is used.

The range of annual precipitation of GSMaP at each grid is small in comparison with
the ranges of the three models (Figure 6). This is also due to the insufficient horizontal
resolution of GSMaP. The spatial variability of precipitation is distinct in a mountainous area
of the Panama Canal catchment [27]. Therefore, the horizontal resolution of a precipitation
dataset may affect the reportability of precipitation, especially for finer horizontal resolution
of models such as NHRCMs.

Another uncertainty in precipitation datasets stems from the specific time period,
since precipitation has large variabilities in time. NHRCMs and GSMaP have no overlap
period; the former period is 1981 to 2000, while the latter period is 2001 to 2010. The mean
climatological precipitation was compared between the two periods using precipitation
in CRU TS. The ratio of annual precipitation of the former to the latter is 1.03. The
maximum monthly precipitation ratio is 1.19 in November, while the minimum is 0.95 in
October. These differences allow us to compare climatological precipitation between the
two reference periods.

4. Conclusions

We used an inner nested grid with spacing of 2 and 5 km to run NHRCMs for a 20-year
integration of the current climate. As the grid size becomes finer, NHRCMs have smaller
biases. NHRCM02 has small biases that are geographically distributed in Panama, and the
area average over the country is minimal. NHRCM02 did a better job of simulating surface
air temperature than NHRCM05, and the spatial horizontal resolution did not affect the
biases and RMSE, but did affect the spatial correlation.

NHRCM02 simulated annual mean precipitation better than NHRCM05, probably
due to a convection-permitting model without a convection scheme, such as the Kain and
Fritsch scheme. The spatial correlations of NHRCM02 were slightly higher than those of
NHRCM05. The seasonal changes of precipitation were well simulated in both models.
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MRI-AGCM had good replicability of precipitation similar to NHRCM02 and out-
performed NHRCM05. This suggests that 5 km horizontal resolution is not suitable for
simulating climate in Panama and 2 km is required for correct simulation. The difference
between NHRCM02 and NHRCM05 is whether it is a convection-permitting model or
not, or, in other words, whether the convection scheme is switched on or not, which may
play an important role in replicability. The range of annual precipitation in GSMaP at each
grid is small compared with the three models. Therefore, the horizontal resolution of a
precipitation dataset may affect the reportability of precipitation, especially for models
with finer horizontal resolution such as NHRCMs. NHRCMs tend to simulate geographic
precipitation too finely to compare with GSMaP. Therefore, the horizontal resolution of
a precipitation dataset may affect the reportability of precipitation, especially for models
with finer horizontal orientation such as NHRCMs.

There are many challenging topics for simulation of the current climate with a regional
climate model in Panama as well as all over the world [32]. For example, the climato-
logical aspect of the diurnal cycle in the tropics is a key phenomenon to be replicated
in regional climate models [28]. The replicability of extreme events [5,11,29,33,34] in the
current climate is an important feature in climate modeling, along with the replicability of
climates. We expect impact assessment researchers and decisionmakers to make use of the
NHRCM to analyze the details of projected global warming and related climate changes
around Panama.
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