Modelado CALPUFF-WRF de la dispersión de PMx, NOx y SO₂ emitidos por la Termoeléctrica de Miraflores en el Canal de Panamá

Modeling CALPUFF-WRF of the dispersion of PMx, NOx and SO₂ emitted by the Thermoelectric of Miraflores in the Panama Canal

Ricardo De León Ortega ^{1*}, José Fábrega ¹

¹Programa de Doctorado en Ingeniería de Proyectos, Universidad Tecnológica de Panamá, ¹Centro de Investigaciones
Hidráulicas e Hidrotécnicas, Universidad Tecnológica de Panamá

¹ricardo.leon2@utp.ac.pa, ¹jose.fabrega@utp.ac.pa

Resumen— En esta primera etapa de la investigación se modeló la dispersión y el transporte de material paticulado, óxidos de nitrógeno y dióxido de azufre emitidos por la Planta Termoeléctrica de Miraflores. Se escogió el modelo CALPUFF por ser el recomendado por la EPA para recorridos mayores de 50 km y donde se presentan cambios de cobertura: agua, suelo. Este modelo, además de ser complejo, requiere el uso de datos continuos en tiempo y espacio para generar resultados válidos. A falta de una cobertura total en estaciones meteorológicas superficiales, recurrimos al uso del modelo meteorológico WRF con el cual se pudo simular el campo de vientos tridimensional para un dominio de 50x50km² con resolución de 4x4km². Los resultados obtenidos que se presentan en este artículo muestran los puntos de mayor concentración promedio de 1h de contaminantes, cuyos valores aplicando la metodología EPA para Puerto Rico como referencia, arrojan buenos índices de calidad del aire.

Palabras claves— Modelado atmosférico, dispersión, CALPUFF, WRF, termoeléctrica de Miraflores, Canal de Panamá.

Abstract—In this first stage of the research the dispersion and transport of paticulated material, nitrogen oxides and sulfur dioxide emitted by the Miraflores Thermoelectric Plant were modeled. The CALPUFF model was chosen because it is recommended by the EPA for routes over 50 km and where changes in coverage are presented: water, soil. This model, besides being complex, requires the use of continuous data in time and space to generate valid results. In the absence of total coverage in surface meteorological stations, we used the WRF meteorological model with which the three-dimensional wind field could be simulated for a 50x50km² domain with 4x4km² resolution. The results obtained in this article show the points with the highest average concentration of 1h of pollutants, whose values applying the EPA methodology for Puerto Rico as a reference, yield good air quality.

Keywords—Atmospheric modeling, dispersion, CALPUFF, WRF, thermoelectric power plant in Miraflores, Panama Canal.

Tipo de Artículo: Original

Fecha de Recepción: 27 de febrero de 2017 Fecha de Aceptación: 25 de septiembre de 2017

1. Introducción

La mayoría de las actividades humanas y los procesos naturales producen contaminantes al aire, no todos problemáticos, sin embargo, algunas formas se estiman estar relacionadas con muertes prematuras en todo el mundo [1]. La concentración en la cual un contaminante atmosférico alcanza a la población depende directamente de cuán disperso esté el mismo en el aire. El modelado de dispersión es una técnica poderosa para evaluar si una fuente emisora de

contaminantes atmosféricos representa o no un problema. Históricamente el modelado de dispersión ha sido campo para meteorólogos, sin embargo, en la actualidad es una herramienta importante en estudios académicos de calidad de aire y en la práctica profesional de ingenieros ambientales. La aproximación basada en clases de estabilidad atmosférica de los modelos de dispersión utilizados en el pasado, ha sido reemplazada por la Agencia de Protección Ambiental de los Estados Unidos de

América (EPA) por modelos numéricos que requieren de la parametrización continua de las variables, meteorológicas y de emisión, relacionadas con la dispersión atmosférica. Esto conlleva, un método semiempírico donde las ecuaciones matemáticas de la dispersión se calibran con observaciones para que el modelo genere resultados. En esta investigación se utilizó el modelo de dispersión de licencia libre más reciente aprobado por la EPA: CALPUFF v.5.8.5 [2]. Es un modelo gaussiano de dispersión de contaminantes en forma de nubes (puff), cuya primera versión fue desarrollada a finales de los 80's [3]. El objetivo fue modelar la dispersión y el transporte de material particulado (PMx), óxidos de nitrógeno (NOx) y dióxido de azufre (SO2) que son los contaminantes típicos de la combustión fósil. Se escogió como fuente fija la Planta Termoeléctrica de Miraflores del Canal de Panamá, dada la importancia relevante del área utilizada para múltiples actividades donde convergen residentes y visitantes tanto nacionales como extranjeros. Este tipo de trabajo no ha sido realizado en el Canal de Panamá y se espera que las concentraciones de contaminantes atmosféricos calculadas por CALPUFF, a partir de las emisiones medidas, sirvan de referencia para una gestión ambiental en el área y el buen funcionamiento de la Planta. CALPUFF requiere un modelo meteorológico CALMET, la caracterización de la fuente de emisión para calcular la dispersión y el transporte y finalmente, el cálculo CALPUFF concentraciones en la zona de estudio con CALPOST.

2. Caracterización de la Planta Termoeléctrica de Miraflores como fuente fija de emisión

La Planta Termoeléctrica de Miraflores, ubicada a un costado de las esclusas del mismo nombre a la entrada Pacífica del Canal de Panamá, inicia en 1925 como Planta de Generación Eléctrica con la instalación de máquinas de pistones en el edificio donde operaba una subestación desde 1914, cuando el Canal de Panamá inició sus operaciones [4].

Al momento de esta investigación, la misma contaba con 8 motores (ver tabla 1), unos a diésel y otros a búnker, de los cuales se contaba con el informe de emisiones de los motores 6, 7 y 8 medidas en febrero de 2012 (ver tabla 3). El informe de 2013 estaba bajo revisión aún.

Las unidades 6, 7 y 8 pertenecen a un motor de combustión interna que utiliza búnker para su operación y diésel para el arranque y parada de la unidad [5].

La ubicación geográfica de las chimeneas de estos motores se muestra en la figura 1 y en la tabla 2 [6].

Tabla 1. Motores operativos en la Planta Termoeléctrica de Miraflores al momento de la investigación

Unidad	Tipo de	Combustible	P en	Condición
	Máquina		MW	
1	Turbina	Diésel	9	No
	de gas			operativa
2	Turbina	Diésel	9	No
	de gas			operativa
3	Turbina	Búnker	22	Fuera de
	de vapor			servicio
				por averías
4	Turbina	Búnker	24	Fuera de
	de vapor			servicio
				por averías
5	Turbina	Diésel	18	No
	de gas			operativa
6	Motor de	Búnker	18	Operativa
	combusti			
	ón			
	interna			
7	Motor de	Búnker	18	Operativa
	combusti			
	ón			
	interna			_
8	Motor de	Búnker	18	Operativa
	combusti			
	ón			
	interna			

Figura 1. Localización de las chimeneas de los motores 6, 7 y 8 de la Planta Termoeléctrica de Miraflores. Imagen de *Google Earth*.

Tabla 2. Coordenadas UTM WGS84 de las chimeneas de los motores 6,7 y 8 de la Planta Termoeléctrica de Miraflores

Unidad	Latitud Y en m Norte	Longitud X en m Este
6	995 209	654 899
7	995 193	654 888
8	995 190	654 899

Tabla 3. Emisiones de PMx, NOx y SO₂ en los motores 6, 7 y 8 de la Planta Termoeléctrica de Miraflores medidas del 27 al 29 de febrero de 2012

	Caudal	Concentración Medida (mg/Nm³)			
Unidad	Medido	PMx	NOx	SO_2	
	(Nm ³ /s)				
6	67.6044	30.44	85.25	435.89	
7	59.4391	56.34	70.66	376.62	
8	54.5018	40.46	75.56	375.00	
Emisión ponderada		41.91	77.54	398.15	
(mg/Nm ³)					
Emisión ponderada		0.20	0.39	2.06	
(ton/día)					
Emisión ponderada		79.83	147.21	755.80	
(ton/año)					
Método de medición		EPA	EPA	EPA	
		Método 5	Método 7	Método 6	

Tabla 4. Datos de la Chimenea Equivalente como Fuente Fija de Emisión para el Modelado CALPUFF

	Diámetro	Altura	Velocidad	T	
Unidad	interior	(m)	del gas	(K)	
	(m)		(m/s)		
6			33.2073	621.73	
7	1.61		29.1965	596.40	
8			26.7713	597.82	
Equivalente	1.61	30*	29.72	605.32	
Latitud, m	995 199.5				
Longitud, m	654 895.7				
Elevación, m	19.60**				

^{*}estimación en sitio, de la base respecto al NMM.

Para la modelación CALPUFF [7] se reemplazaron las tres chimeneas por una sola equivalente cuya posición se calculó en el centroide del triángulo formado por las chimeneas 6, 7 y 8. Esta chimenea equivalente tiene la misma configuración geométrica de

las chimeneas originales. Altura de 30 m y diámetro interno de 1.61 m. La emisión, calculada a partir de las concentraciones medidas, será la ponderada de los tres motores de acuerdo a lo establecido en el Decreto Ejecutivo No.5 de 4 de febrero de 2009, "Por el cual se dictan normas ambientales de emisiones de fuentes fijas" [6]. El factor de ponderación para cada motor será igual a su caudal medido entre el caudal total emitido por los tres motores. La suma de los productos de cada factor de ponderación por la concentración medida del contaminante dará como resultado su emisión ponderada.

3. Modelado Meteorológico CALMET 3.1 Datos de Entrada

El modelo WRF (Weather Research and Forecasting Model) [8] es un sistema numérico de última generación para la predicción del clima a mesoescala (de 10 Km hasta cientos de km) que puede generar simulaciones atmosféricas utilizando datos reales (observaciones o análisis) o condiciones idealizadas.

Para la investigación se escogió un dominio de 50x50 km², cuyo centro se ubicó aproximadamente en el centro del Canal de Panamá (9°06'44"N, 79°45'55"W, WGS84) con un cuadriculado de 4x4 Km², 35 niveles verticales con el nivel más bajo a 20 m del suelo. El modelo WRF generó, a partir de datos reales (medidos y de análisis) una meteorología simulada tridimensional para el dominio de estudio, correspondiente al año 2014, del 1 de enero a las 0:00 h hasta el 31 de diciembre a las 23:00 h. (ver figura 2).

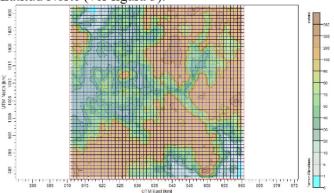
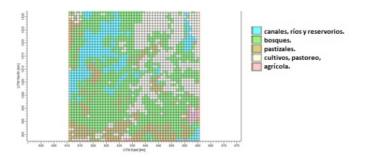


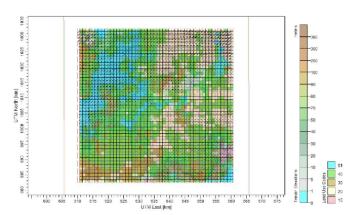
Figura 2. Dominio para el modelo meteorológico WRF.

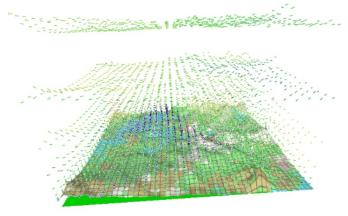
Este modelo meteorológico tridimensional se georeferenció a una cuadrícula de mayor resolución que contenía el uso y la cobertura del suelo, además de la


^{**}valor calculado por el programa CALPUFF utilizando el Modelo Digital del Terreno.

configuración del terreno. Como Modelo Digital del Terreno se utilizó el SRTM1 (Shuttle Radar Topography Mission Global Coverage) Versión 3, cuya precisión es de 30 m (aproximadamente 1") [9]. Este modelo contiene información sobre las elevaciones utilizando el WGS84 como referencia geodésica con una cobertura global entre 56° de Latitud Sur a 60° de Latitud Norte (ver figura 3).

Figura 3. Modelo del Terreno extraído del SRTM1 para el dominio de estudio en una cuadrícula de 1x1 km² de resolución espacial.


Para el uso del suelo y cobertura se utilizó el GLCC (Global Land Cover Characterization) [10], específicamente los datos de Uso del Suelo y Cobertura para América del Norte. Este modelo de uso del suelo y cobertura global tiene una resolución de 1 km (30" aproximadamente), la información contenida fue obtenida por la unidad de ciencias de la Tierra y sensado remoto (Earth Science and Remote Sensing Unit, ESRS) de la NASA (Agencia Espacial de los Estados Unidos de América) y utiliza la proyección Lambert Equiárea Azimutal como referencia cartográfica (ver figura 4).


Figura 4. Modelo de uso del suelo y cobertura extraído del GLCC para el dominio de estudio en la cuadrícula de 1x1 km² de resolución espacial.

3.2 Procesado y Resultados

Con los datos de entrada geodésicos (modelo digital del terreno, uso del suelo y cobertura) y los datos del modelo WRF postprocesados para que fueran compatibles con CALMET [11], se especificó una cuadrícula de 1x1 km² para generar el campo de vientos tridimensional que se ajuste a la forma del terreno y al tipo de cobertura. Los resultados del procesado CALMET se muestran en las figuras 5 y 6.

Figura 5. Modelo Meteorológico CALMET donde se muestra la dirección del viento en cada celda para el dominio de estudio en una cuadrícula de 1x1 km² de resolución espacial.

Figura 6. Modelo Meteorológico CALMET muestra la variación tridimensional de los vientos tanto en dirección como en velocidad, entre otras variables meteorológicas.

4. Modelado de dispersión CALPUFF

4.1 Área de Muestreo y cuadrícula discreta

Adicional al campo de vientos tridimensional generado por CALMET, el programa permite escoger un área de muestreo y análisis menor al dominio de estudio, para evitar errores de borde y demorar menos los cálculos de CALPUFF.

Para ello, CALPUFF pidió el rango de pixeles a considerar en las direcciones X e Y. El dominio total fue de 50 pixeles de 1x1 km² en cada dirección, se le indicó al programa que considerara como cuadrícula de muestreo del 2 al 50 en ambas direcciones. Una vez definida la cuadrícula de muestreo, ésta se transformó a una red de puntos llamados receptores. Para ello, CALPUFF calculó las coordenadas del centro de cada pixel transformando la cuadrícula a discreta.

4.2 Fuente de Emisión de Contaminantes a modelar

Como fuente puntual fija se escogió la chimenea equivalente a los motores 6, 7 y 8. El programa CALPUFF requiere como datos de entrada: las coordenadas de la chimenea equivalente, la elevación de la base respecto al Nivel Medio del Mar (NMM), la altura de la chimenea, la temperatura promedio del gas en la chimenea en Kelvin, el diámetro interior en m y la velocidad del gas en la salida de la chimenea en m/s.

4.3 Contaminantes a modelar

Finalmente, se escogieron las especies a modelar: PMx, NOx, SO₂ y se introdujeron las emisiones estimadas en ton/año a partir de las concentraciones medidas de los contaminantes en los gases de salida, suministradas por la ACP en el Informe de Ensayo de Emisiones de 2012. Debido a que la medición se realiza una vez al año con los motores trabajando a la potencia recomendada por el fabricante (17 MW), la emisión de contaminantes se consideró constante para el modelado.

4.4 Procesado y resultados

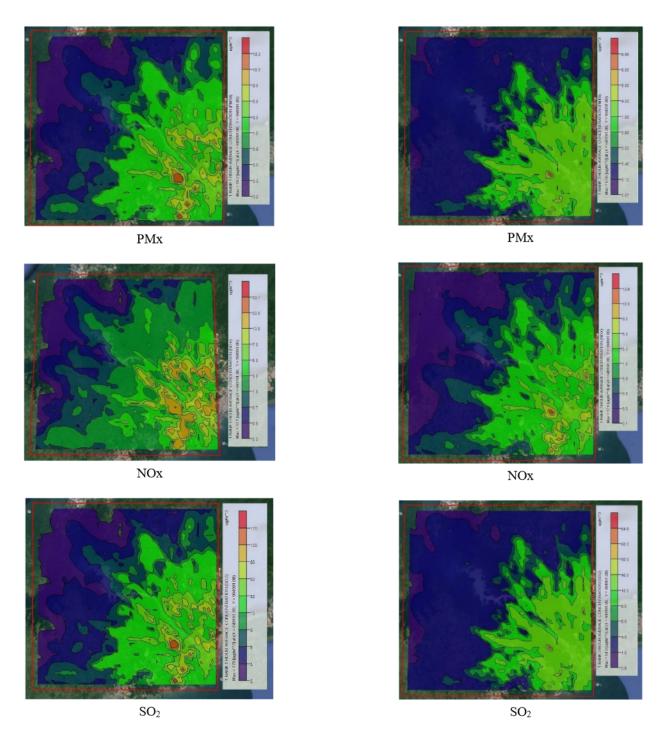
Se corrió CALPUFF con los parámetros recomendados en defecto. En estos receptores, el programa calculó las concentraciones y los flujos de deposición horarios de cada contaminante modelado.

Para esta investigación fue de interés solo las concentraciones calculadas a nivel de terreno.

5. Procesado y resultados CALPOST

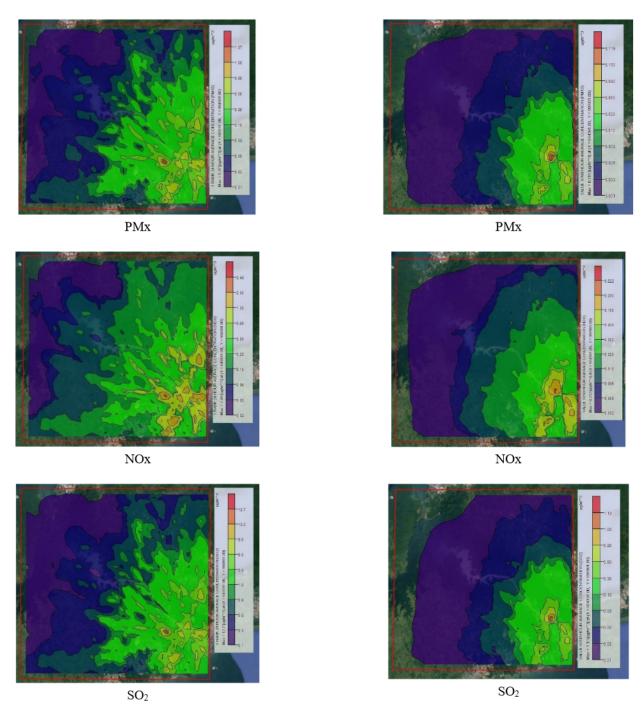
CALPOST es el tercer componente modelador de CALPUFF, el cual calculó la concentración promedio a nivel de terreno y el flujo de deposición promedio de cada contaminante modelado para periodos específicos de tiempo (1 h, 3 h, 24 h, 1 año), a partir de los resultados CALPUFF (ver tabla 5). Igualmente, determinó en qué receptores se dan las concentraciones

promedios más altas para cada contaminante y en qué momento (ver tabla 6). CALPOST arrojó los resultados en tablas y gráficos (ver figuras 7 a 10) con el visor *CALPUFF View* v 8.4.0 de *Lakes Environmental Software*.


Tabla 5. Concentraciones máximas calculadas por CALPUFF para la dispersión y transporte de PMx, NOx y SO₂ emitidos por la Planta Termoeléctrica de Miraflores para el año 2014

Período	Concentración máxima (µg/Nm³)			Momento y lugar	
Perí	PMx	NOx	SO ₂	Día Hora	Y (m, N) X (m, E)
1h	18.186	33.097	169.950	12/oct	A (III, E)
				4:00	994 991
3h	6.948	12.648	64.948	12/oct	649 181
				2:00	
24h	1.367	2.479	12.730	11/oct	
				23:00	
1 año	0.119	0.222	0.113		995 991
					654 181

Tabla 6. Concentraciones máximas promedio en 1h calculadas por CALPUFF para la dispersión y transporte de PMx, NOx y SO₂ emitidos por la Planta Termoeléctrica de Miraflores para el año 2014 y su correspondiente Índice de Calidad de Aire calculado con los parámetros de la EPA


Contaminante Período	Concentració n en μg/Nm³ y ppb	AQI** (EPA)	Categoría Efecto a la salud	Personas en riesgo
PMx	18.186	17	Bueno	Personas con
			Ninguno	enfermedades
1h				respiratorias.
NOx	33.097	16	Bueno	Personas con
			Ninguno	asma u otra
1h	17.601*			enfermedad
				respiratoria, los
				adultos mayores
				y niños.
SO ₂	169.950	86	Moderado	Personas con
1h	64.959*		Ninguno	asma.

*Calculado con el convertidor de μg/Nm³ a ppb para gases. ** Air Quality Index calculado a partir de las concentraciones en ppb para los gases y en μg/m3 para las PMx.

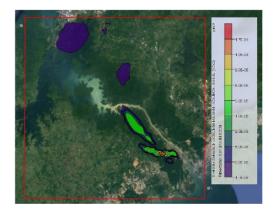

Figura 7. Concentraciones promedios en 1h para PMx, NOx y SO_2 en el dominio de estudio en μ g/Nm³. Gráficos de *CALPUFF View* v.8.4.0 montados sobre una imagen de *Google Earth* del área.

Figura 8. Concentraciones promedios en 3h para PMx, NOx y SO_2 en el dominio de estudio en μ g/Nm³. Gráficos de *CALPUFF View* v.8.4.0 montados sobre una imagen de *Google Earth* del área.

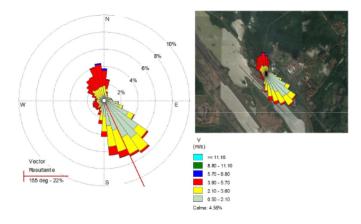


Figura 9. Concentraciones promedios en 24h para PMx, NOx y SO_2 en el dominio de estudio en μ g/Nm³. Gráficos de *CALPUFF View* v.8.4.0 montados sobre una imagen de *Google Earth* del área.

Figura 10. Concentraciones promedios en 1 año para PMx, NOx y SO_2 en el dominio de estudio en μ g/Nm³. Gráficos de *CALPUFF View* v.8.4.0 montados sobre una imagen de *Google Earth* del área.

Figura 11. Pluma de dispersión de contaminantes provenientes de la Planta Termoeléctrica de Miraflores en el momento de mayor concentración promedio de 1h: 12 de octubre de 2014 a las 4:00 h. Gráfico de *CALPUFF View* v.8.4.0 montado sobre una imagen de *Google Earth* del área.

Figura 12. Rosa de los vientos localizada en Planta Termoeléctrica de Miraflores. Muestra la distribución estadística de los vientos durante el año 2014. Gráfico de *CALPUFF View* v.8.4.0 montado sobre una imagen de *Google Earth* del área.

6. Resultados

Para los tres contaminantes modelados, el comportamiento de dispersión fue similar. Las concentraciones promedio mayores se presentaron en un período de 1h y fueron disminuyendo al aumentar el periodo de modelado como era de esperarse. Siendo los valores mayores para las concentraciones de SO₂ y los menores para el material particulado PMx. (ver figuras 7 a 10).

Las gráficas presentan, además, la distribución espacial de las concentraciones de contaminantes en el dominio de estudio. Los rangos de valores de concentraciones en 1h variaron de 0.2 a $18.2~\mu g/Nm^3$ para las PMx, de 0.3 a $33.1~\mu g/Nm^3$ para los NOx y de 2 a $170~\mu g/Nm^3$ para los SO₂. Las máximas concentraciones para los tres contaminantes se presentaron a 5 718.5 m al Suroeste de la fuente de emisión y la distribución de concentraciones de mediano valor en la escala de variación fue la de mayor cobertura espacial (ver figuras 7 y 13).

Los rangos de valores de concentraciones en 3h variaron de 0.07 a $6.95 \mu g/Nm^3$ para las PMx, de 0.1 a $12.6 \mu g/Nm^3$ para los NOx y de 0.6 a $64.9 \mu g/Nm^3$ para los SO₂. La distribución de concentraciones para este período de modelado fue de menor cobertura espacial que para 1h, sin embargo, las máximas concentraciones de contaminantes se presentaron en el mismo punto (ver figura 8).

Los rangos de valores de concentraciones en 24h variaron de 0.01 a $1.37~\mu g/Nm^3$ para las PMx, de 0.02 a $2.48~\mu g/Nm^3$ para los NOx y de 0.1 a $12.7~\mu g/Nm^3$ para los SO₂. La distribución de concentraciones para este período de modelado fue bastante similar que para 1h, tanto en cobertura espacial de valores medios de concentración en la escala de variación como en el punto donde se presentaron las mayores concentraciones (ver figura 9).

Los rangos de valores de concentraciones en 1 año variaron de 0.001 a $0.119~\mu g/Nm^3$ para las PMx, de 0.002 a $0.222~\mu g/Nm^3$ para los NOx y de 0.01 a $1.13~\mu g/Nm^3$ para los SO₂. La distribución de concentraciones para este periodo de modelado fue la de menor cobertura espacial y las mayores concentraciones se presentaron a 1 066 m al Noroeste de la Fuente de Emisión (ver figuras 10 y 13).

Figura 13. Localización de la Fuente de Emisión Fija y los receptores para mayor concentración de contaminantes