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Abstract: Hyperspectral imaging has become a valuable remote sensing tool due to the development
of advanced remote acquisition systems with high spatial and spectral resolution, and the continuous
developments on more efficient computing resources to handle the high volume of data. For this
reason, hyperspectral image analysis has found important uses in precision agriculture, where the
health status of crops in various stages of the production process can be assessed from their spectral
signatures. This has similarly been the case for rice cultivation, which represents one of the most
valuable crops worldwide in terms of gross production value, global consumption rates, and food
security reserves. To maximize the productivity of this activity and minimize economic and food
crop losses, various precision agriculture techniques to optimize yields by managing production
inputs and monitoring plant health have been developed. Such applications include landcover
classification, cultivar identification, nitrogen level assessment, chlorophyll content estimation and
the identification of various factors, such as the presence of pests, weeds, disease or pollutants. The
current work highlights and summarizes various aspects of interest of the main studies on
hyperspectral imaging applications for rice cultivation. For instance, several tables summarize the
most relevant work on the application of hyperspectral imaging for rice cultivation based on their
acquisition methods, spectral region, rice species, and inferred magnitudes, among other parameters.
In addition, we identify challenges across the field that limit the widespread deployment of
hyperspectral imaging applications. Among these challenges, adequate modeling of various dynamic
local factors and their influence on the analysis is a main concern.

The main objective of this review is to provide a reference for future works that addresses the
main challenges, and accelerate the development of deployable end user technologies to meet current
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global Sustainable Development Goals, in a manner that is resilient towards the increasingly
dynamic growing conditions of rice plants expected by global climate change.

Keywords: precision agriculture; hyperspectral; remote sensing; rice; spectral analysis

1. Introduction

Rice (Oriza sativa L.) is the main food staple for more than half of the world’s population,
particularly those living in some of the most populous countries, such as China, India and
Japan [1-3]. Humans have a long history of cultivating rice crops; Rice was first domesticated
approximately 9000 years ago by people living in the region of the Yangtze River valley in
China [4]. For the Food and Agriculture Organization (FAO) of the United Nations (UN), world
rice production forecasts an overall increase of 10.3 million tons per year to a new maximum of
769.9 million tons in 2018 [5], at normal growing conditions. This growth in production output
driven by human consumption, which would decrease other uses, such as industrial and feed uses.
Due population growth, global per capita food consumption showed an increase (0.4%) from 53.7 kg
in 2017, to 53.9 kg in 2018. In terms of global rice consumption, by 2020 this amounted to a total of
379.035 million tons for the major consuming countries (China, India, Indonesia, Bangladesh,
Vietnam, Philippines, Myanmar, Thailand, Japan and Brazil) [6]. Rice cultivation activity currently
faces a series of challenges in order to meet current and projected future global consumption rates.
Of most importance is the limited opportunity for expansion due to outright decline of available
arable land [7,8], the increasingly limited availability of fresh water for irrigation due to climate
change, increased industrial activity and urban freshwater usage [7,9-11]. Moreover, several
additional factors have been identified as key contributors to declining rice crop yields such as the
narrow genetic background of rice plants, inadequate soil drainage, which contributes to increased
salinity and alkalinity over time, soil nutrient and organic matter deficiencies, and further soil quality
decline from fertilizer and pesticide overuse [7,12]. Finally, the prevalent lack of strong research
extension-farmer relationships, farmer organizations and public-private partnerships limits the
capacity of producers to overcome these challenges [7].

Due to the urgent imminent requirement of supplying the growing world population with a
sufficient volume of rice crop, it is important to know the development cycles of this plant, as well as
the factors, both climatic and environmental, that limit its development and yield. In addition, it is
important to study the influence of environmental factors, such as the presence of heavy metals or
other contaminants, in the nutritional profile and potential toxicity of cultivated rice. It is also
necessary to consider all the methodologies and technologies available for crop analysis such as the
mechanisms of pollutants uptake and translocation in rice, phenology, canopy reflectance spectra,
remote sensing, near-surface imaging spectroscopy and, of particular interest to this work,
hyperspectral imaging [13].

The tangible and potential improvements introduced by Information and Communications
Technologies (ICTs), particularly from the disruptive fields of machine learning and digital signal
processing and including widely-deployed acquisition technologies such as the Internet of Things
(1oT) [14,15], biosensors [16] and wireless sensor networks [17], have impacted such a wide variety
of fields that the UN has stated their confidence that these technologies have changed the modern
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world, and possess the potential to continue to do so in a manner that makes them key to fulfilling
their Sustainable Development Goals [18]. These technologies have introduced tangible benefits in
various precision agriculture applications for rice cultivation applications [19-22]. Additionally,
these technologies have enabled improvements in automated crop monitoring [23], efficient
production input distribution [24], and crop quality evaluation tasks [25]. Several of these
applications have been academically proposed but have faced difficulties in reaching sufficiently
large-scale deployments as to shift the established agricultural production paradigms. Precision
agriculture implied the use of sensors and advanced imaging technique to obtain data to monitoring
the health status of the crops [26]. Hyperspectral imaging systems have gained notable relevance due
to the advanced development of remote sensing systems with higher spectral and spatial resolution
and have been used as a tool in precision agriculture in studies of morphological and physical stages
of different crops however does not have been fully exploited. This spectral sensing technique allows
the study of crop biophysical and biochemical properties, soil characteristics and crops classification
as well to monitoring large fields of cultivation. Due to the advances in optoelectronics and data
acquisitions systems HSI is now more accessible and allows the access to low cost and small size
hyperspectral sensors. [27]. Additionally, a plural development of algorithms to work with high
amount of data to extract information from the spectral signature of the materials with advanced
techniques such as linear regression, nonlinear regression, and combined methods that
incorporate machine learning techniques such as Support Vector Machines, neural networks and
others [26,28-30]. Recent studies use the spectral measurements of various crops to infer important
magnitudes such as nitrogen (N) content [31], landcover classification of cultivated areas [32]
and individual plants [33], detection of plant diseases [34], detection of pest presence [35] and
damage to plants [36] and various others, which creates opportunities for improved yield and process
efficiency in rice cultivation through their use in smart remote sensing applications.

The main contribution of this work is to provide the community with an up-to-date survey of the
most relevant works regarding the use of hyperspectral imaging sensing technology and
hyperspectral image processing algorithms for the estimation and monitoring of various aspects of
the rice cultivation process without the requirement of a field-wide deployment of individual sensors.
Additionally, we provide a comparison of the signal processing methodologies used in the most
relevant studies and present the main challenges for application deployments in the field. The
methodologies proposed in these studies can potentially contribute to the cost reduction of
measurement systems in precision agriculture operations, and alleviate the human labor requirements
for the processes of assessing the health and expected productivity of rice plants in all its stages,
from seeding to harvest on the field. Advances made towards alleviating these challenges are of
special interest to all involved in the development and deployment of innovative precision
agriculture applications. Particularly, funding agencies for rice producers such as banks, insurance
companies, private investors, and other entities who would benefit from more accurate return of
investment (ROI) estimates. With more informed yield estimates, more accurate risk assessment
studies can be conducted by these agencies and more producers can potentially benefit from
increased availability of funding sources for their activities. In this manner, it is our hope that this
work serves as a starting point for future research efforts.
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2. Constraining factors in rice cultivation

Rice production, like other types of crops, have been adapting farming methods to deal with
problems connected to climate change, the growing demand for food, and the limitation of the
amount of land for cultivation. The key challenges for rice cultivation are: sea water intrusion which
is a problem of salinity in landscape areas (particularly sea level rise zones in Asia), deforestation,
variability in precipitations patterns and water scarcity that requires a dynamic between availability
and management of this resource [37]. Those problems require the use of new rice species that are
resistant as well as new technologies to support monitoring, predictive analysis and water saving
systems which are commonly linked to precision agriculture. Precision agriculture is a set of signal
processing techniques and specialized machinery, sensors, actuators and various information systems
in order to optimize crop production in agricultural systems [38]. Thus, the main object of study of
this field is to further increase the effectiveness of agricultural activity by incorporating additional
variables of interest into the decision-making systems from sensor technology developments,
improving decision making processes through various algorithms, and new innovations in actuator
technology. In this manner, the potential yields of the agricultural process are maximized by
continuously ensuring the optimal conditions for adequate plant growth and development. In most
ecosystems around the world, Photosynthesis is one of the most important processes for capturing
energy from sunlight. The balance of the photosynthetic and respiration processes in plants is crucial
for understanding their growth and productivity expectations, as well as the overall carbon cycle of
ecosystems [39,40].

2.1. Chlorophyll and Nitrogen

Chlorophyll is an important indicator of the photosynthetic capacity and vegetation stress in
plants, changing its concentration in response to environmental conditions and solar radiation [41,42].
In previous studies, plant chlorophyll content has been identified to describe a close relationship to
the gross food and biomass production capabilities of plants [43,44]. Further, there exists an
established correlation between the measured N levels present in plant leaves and its expected
productivity levels [45]. Thus, N is considered as a limiting element for plant growth since is the key
nutrient parameter determining the photosynthetic functioning and productivity in rice crops [46]. N
deficiency in plants can lead to lower chlorophyll content, lower photosynthetic assimilation, less
biomass production, and reduced grain yield. On the other hand, a high content of N can improve
chlorophyll density, which results in higher levels of photosynthetic activity and, by extension,
productivity levels [47]. However, increasing N levels through external production inputs, such as
fertilizers, can cause a series of environmental pollution issues and even diminished yields when
fertilization become excessive [48]. The excess reactive N, derived from over and/or improper
application of N fertilizers, may produce detrimental effects on public health and ecosystems. Excess
N deposition in atmosphere considered recognition as a potent contributor to global warming and
stratospheric ozone depletion [49].
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2.2. Carbon cycle

In addition, the study of the vegetation ecosystem carbon cycle attracts considerable interest to
assess carbon sequestration capability [23,50]. In the face of rising global atmospheric CO; levels
that contribute to climate change, elevated carbon assimilation in crop plants has promising effects
on both crop yields and sequestration capabilities to aid in lowering the overall carbon levels in the
atmosphere [51].

2.3. Soil nutrients

A key factor to consider in precision agriculture is the amount of nutrients present in the soil.
Nutrient availability in soils play an important role in agricultural productivity, food security and
agroecological sustainable development [52,53]. Parameters such as soil moisture, organic carbon,
organic matter, heavy metals and soil nutrient contents are common soil properties and should be
consider in prediction models for reducing soil nutrient loss and improving soil fertilization
management practices, based on more robust and more sensitive analytical techniques, to
complement plant information. To this end, specific wavelength ranges in aerial hyperspectral
images have been used to characterize the nutrient content and distribution over regional scales [53].

2.4. Heavy metal pollution

Due to the rapid development of the industry economy in adjacency to agricultural land, rice
paddies have been subjected to heavy metal pollution in some areas [27,54,55]. Some metals as
cadmium (Cd), arsenic (As), and lead (Pb) are of great concern. It is known, that in China, for
example, nearly 20 million hectares of cultivated land is contaminated with metals, resulting in about
12 million tons of contaminated grains which translate to about 2.4 billion US dollars of economic
loss per year. Heavy metal pollution is becoming a worldwide concern to both agriculture and human
health. One of the most contaminant elements is Cd, characterized as a toxic heavy metal, because
either can contaminate the soil with a high mobility in living organisms, or have toxic effects on rice
expose to this metal. As of constants applications of N fertilizers in agriculture, many soils become
more acidic allowing Cd being easily absorbed by plants [13]. Cd is transferred from soil to rice and
accumulates in rice plants and grains and then is enriched in the human body thought the food chain,
thereby threatening human health. The high mobility of Cd causes effect on rice plants and crops
exposed to this metal by interfering with the physiological activities of plants, such as photosynthesis,
gaseous exchange, and nutrient absorption, to cause reduction in plant growth and dry matter
accumulation [56]. In addition to crop health, heavy metal pollution has been demonstrated to
negatively impact human health, and to cause effects such as anemia, cancer, heart failure,
hypertension, cerebral infarction, proteinuria, severe lung damage, eye -cataract formation,
osteoporosis, emphysema, and renal insufficiency [13,57,58].

2.5. Water management

Shifting weather patterns as a result of imminent climate change is a growing concern for
government agencies worldwide due to the potential shifting in water availability around the
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world [59,60]. Failure to adapt proper water management practices can have significant adverse
effects on the food security of a given region. For the purposes of properly assessing and managing
both the quantity and quality of available water resources, hyperspectral imaging applications have
been devised in various regions [61-64]. On the subject of hyperspectral imaging applications
for water management precision agriculture, there is a growing interest in monitoring and
managing drought stress to maintain high production levels in intensive crop farming
applications [65-69]. Through a combination of drought-tolerant cultivars and precise water
resource availability monitoring, irrigation practices can be optimized in order to ensure the
continued increase in yields and food security for communities in drought-prone areas.

3. Hyperspectral imaging

Hyperspectral images provide valuable, spatially-resolved information for remote sensing
applications in hundreds of individual wavelengths beyond the visible spectrum. With the increase
of available spectral information about their targets, it is possible to perform accurate classification
of objects and/or materials within a spatial scene of interest. This ability has demonstrated to be of
use in fields such as studies of the atmosphere, vegetation, agriculture and coastal environments.
Hyperspectral imaging has important applications in precision agriculture, where the health status of
crops in different growth stages can be assessed from their spectral signatures.

Hyperspectral imaging sensors are spatial measurement devices that capture the spectral
behavior of a scene of interest in the form of many simultaneous digital images, each representing a
narrow spectral region across a continuous or discontinuous spectrum [70]. When a given material is
exposed to a light source of a known spectral bandwidth, it emits, absorbs, and/or reflects specific
portions of the electromagnetic spectrum according to its composition. This material-specific
response is known as a material’s spectral signature [70]. As illustrated in Figure 1, this information
is stored in a cubic data structure, where individual spectral bands are “stacked” on top of each other,
ordered by their individual wavelengths.

With this information, an observation of the measured spectral responses allows for the
classification of different materials, or the observation of specific compositional qualities of interest
in biological subjects. This technology has been applied to water resources and flood management,
food quality assessment, medical diagnosis, military applications and various others [29,71-73]. Of
particular importance to the current work, the advantages introduced by hyperspectral image analysis
in precision agriculture are crucial for monitoring the effects of various factors on the spectral
response of plant tissues such as fertilization [74], micronutrient content [75], pest damages [36],
pollutant uptakes [76] or extreme conditions, such as droughts and flooding in localized
regions [77,78]. From the measured variations in spectral responses, further processing of spectral
data can determine the effects of these factors on the safety and productivity of crops. In order to
provide images with a high spectral resolution, hyperspectral imaging devices’ construction requires
complex optomechanical components, which limits their deployability due to increased weight,
volume and power requirements. As illustrated in Figure 2, these devices can be mounted on various
platforms such as satellites [79], aircraft [80], Unmanned Aerial Vehicles (UAV) [81], or handheld
devices which can be used in the field or in laboratory settings. Due to the fact that each platform
provides different tradeoffs regarding spatial resolution, spectral resolution, measurement noise,
coverage and/or deployment costs, the selection of the optimal imaging platform is application
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specific. Hyperspectral imaging enables researchers and plant breeders to analyze various traits of
interest like nutritional values in high throughput [82]. For these authors, it is necessary to obtain an
optimal design of a reliable calibration model, linking the measured spectra with the investigated
traits. It is important to consider, the inclusion of samples from several time and locations to improve
the predictions of the investigated nutrient trait at small calibration set sizes. However, some models
obtained have some limitations because they work only in certain environments and are not
transferable to others, for this reason they should be upgraded with new calibration data to enable a
reliable response of desired traits.

Satellite-Mounted Imager — — — — — — — — — — — — @

; q
Aircraft-Mounted Imager — — — — — — — — — — — h\

UAV-Mounted Imager

Tabletop Imager

s, !
Handheld Imager \-1%

Panchromatic ear Short Wave Medium Wave Long Wave

infrared Infrared Infrared Infrared

1] I I
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Figure 1. Hyperspectral Imaging Technology. Top: Common acquisition platforms.
Bottom: Spectral range and resolution for various spectral imaging technologies.

Another important aspect to consider in agriculture in general, and specially in rice cultivation,
for setting calibration of remote sensing hyperspectral imaging, is the spatial distribution of soil
nutrients which depends mostly on field sampling and laboratory analysis, but in some cases, result
inefficient and time consuming [53]. Nevertheless, applying variables to predict soil nutrients is a
key means of clarifying their spatial variations; is in our opinion, to select carefully representative
sampling field sites followed by the proper laboratory analysis of selected parameters e.g. N,
phosphorus, and soil potassium contents of soil due to they are closely related to nutrient cycling for
growth and fertilizer application in human activities, to support all the calibration models to get more
accurate hyperspectral imaging data.
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In the context of precision agriculture, the introduction of hyperspectral imaging presents
some important advantages as a noninvasive observation and/or monitoring methodology that
does not interfere with crops’ growth process. In addition, a single aerial hyperspectral image
provides a higher volume of detailed information about the developmental progress and chemical
composition of both the plants and soil in a reduced labor-intensive manner compared to laboratory
analysis of field samples. With the objective of estimating productivity levels, previous work on
the spectral analysis of agriculture hyperspectral images has determined mathematical models
that describe the relationships between the spectral behavior of rice, considering both individual
plants and canopies and their chlorophyll, N and total carbon content [23,49,83]. Similar studies
have been conducted for additional food crops such as wheat [84], corn [85,86], barley [82] and
others [87-91].

In addition, hyperspectral images have been used to estimate various agriculturally relevant soil
properties such as carbon content [92-94], heavy metal content [95,96], salinity [97], pH [98] and
overall fertility [99]. Moreover, previous studies have demonstrated the possibility of hyperspectral
image-based methodologies for the detection of fungal organisms and toxins in both crop plants and
food products, which hinder the productivity of plants [100-103], contribute to additional levels
of food waste [104,105], and have adverse effects on human health when consumed [106,107].
Finally, hyperspectral imaging has been employed for detecting the presence of heavy metal
contaminants in the soil [106] and crop plants themselves [108].

2-D Spectral Band

1-D Spectral hééponse Vectors
(pixelwise)

3-D Spectral Cube

Figure 2. Hyperspectral Image signal model, showing a three-dimensional hyperspectral
cube as a “stack” of individual spectral bands, and individual hyperspectral pixel spectral
responses.

4. Hyperspectral imaging for rice cultivation applications
In this section, we highlight and summarize the most relevant contributions of hyperspectral
imaging rice cultivation applications in different stages of plant growth, for various quantities of

interest. After reviewing 168 articles of the most relevant literature, the most significant studies in
hyperspectral rice studies includes a total of 26 (49%) studies aimed at Chlorophyll and/or N
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estimation, 11 (19%) for various seed studies, 11 (19%) for biomass and vegetation quantity
estimation and 10 (17%) for detection of pests, diseases and various pollutants. The distribution of
studies is illustrated in Figure 4b.

Furthermore, the significant contributions in literature are organized, according to their
objectives, in Tables 2 to 5. Table 2 lists the surveyed studies relative to biomass and vegetation
estimation in rice crops or landcover classification of rice growing sites; Table 3 summarizes
significant work concerning chlorophyll and N content estimation; studies of diseases, pests, heavy
metals and other pollutants’ effects on rice crops are summarized in Table 4; studies focused in
various seed properties, lodging and others variables are presented in Table 5.

Figure 3. Spatial distribution of previous works on the use of hyperspectral imaging for
rice cultivation applications.

For rice cultivation, the studies in Tables 2-5 contemplate different rice species, inferred
magnitudes such as total N content, chlorophyll, seed type, viability and/or origin, disease and plague
presence, herbicide toxicity, carbon content, and the spectral region in which these properties
manifest as a measurable spectral response in plants or cultivated rice. Nevertheless, only 20% of
the reviewed literature examine soil variables and their direct relation with rice plant growth and
health [31-33,49,76,109-115], especially to set up a single data base which appraise both to
establish accurate calibration model for remote sensing imaging predictions. As observed in Tables 2
to 5, the majority of rice studies are executed in Asian locations, particularly in mainland China, as is
illustrated in Figure 3. Further, the predominant acquisition methodology in the surveyed literature is
manual acquisition, where spectral measurements are captured in the field by handheld spectral
measurement devices. It is important to know that, while most handheld devices measure a single
spatially averaged spectrum (depending on the instrument’s Field of View), the insights obtained
from the studies on collected spectra can be applied to spatial HSIs if/when available. The
justification for the use of handheld spectrometers is twofold: first, there is a limited number of
satellite missions with onboard measurement devices that are relevant to agricultural applications in
adequate spatial resolutions with public data accessibility. Second, for the purposes of a single or
small amount of studies, there is a significant decrease in cost and planning time requirements when
using handheld devices in comparison to mobile acquisition platforms, such as UAVs. Figure la
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illustrates the distribution of employed sensor platforms for hyperspectral imaging of rice, showing a
clear majority of handheld measurement devices, followed by UAV-mounted sensors. Additionally,
the majority of the studies are performed on a nonstandardized plurality of individual rice cultivars,
which have not been spectrally catalogued according to their visible or NIR spectral responses for
future reference.

Manual - [ RO 44
(SZANVA 1111111111111 e
Satellite [ 5
Ground System Il 1
0 5 10 15 20 25 30 35 40 45 50

Number of Studies

a) Distribution of surveyed literature according to sensing platform.

hlorophyl and Nitrogen Content .y 25
Seed Studies, Lodging, Other I[N 12
Biomass and Vegetation Estimation  [HIIIIHMMMIHMMMIN 11
Pest, Disease and Pollutant Detection [N 10
0 5 10 15 20 25 30

Number of Studies

b) Distribution of surveyed literature according to the intended magnitude to estimate or classify.

Figure 4. Spatial distribution of previous works on the use of hyperspectral imaging for
rice cultivation applications, a) according to the sensing platform; b) according to the
estimated or classified features.

This problem is further compounded by the continuous selective breeding of improved rice
cultivars with attractive features for individual regions such as resistance to heat/cold, pests, presence
of pollutants or increased productivity for a given amount of fertilizer input. For this reason, signal
processing methodologies for precision agriculture of rice crops must be robust enough to
accommodate for slight variations in spectral responses from newly introduced rice cultivars, in
addition to various factors that are vulnerable to imminent shifting climate conditions, such as
drought/flood responses and soil quality [55].

A large part of recent studies is focused on the use of hyperspectral reflectance data. That is, the
evaluation of the spectral behavior of an incident light’s fraction of reflected photons off an object of
study. However, a subset of studies includes the fluorescent spectrum, which are obtained by
capturing the spectrum of the light emitted by the target of interest when exposed to an ultraviolet
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(UV) light source. Due to the low intensity of the emitted light, fluorescence studies tend to be
limited to laboratory environments, where the reflectance component of other light sources can
introduce additive noise to the fluorescence spectral measurements [116-120].

Public Datasets ,
(12%)

Lab Measurements ; Field Measurements
(25%) $)

Figure 5. Distribution of surveyed literature according to the physical location of measurements.

While there exist various hardware configurations for hyperspectral image acquisition such as
Whisk Broom [121], Push Broom [122] and Computer Tomography Imaging Spectrometers [123],
the current study is focused on the study of the measured spectral response data. Table 1 summarizes
the most commonly used sensors in studies utilizing multispectral and/or hyperspectral imaging
devices for rice cultivation applications, according to their operating principles.

For applications where hyperspectral reflectance is measured in the field, the incident light from
the sun is considered. This presents an advantage in crop field applications, where the use of the sun
as a light source reduces the complexity of the acquisition platform. Conversely, in laboratory
measurements, a broadband illumination source is employed [103,124-126]. Across the reviewed
literature, we found that a total of 37 studies (63%) performed measurements in the field, while 15
(25%) performed lab measurements with an artificial light source. The proportion of these studies, is
illustrated in Figure 5, including the 7 studies that make use of publicly available spectral
measurements.

Tables 2 to 5 summarize the most relevant work performed on the application of hyperspectral
imaging for rice cultivation, highlighting the main objects of study and the extent of the spectral
ranges evaluated in each work. These Tables present the acquisition method, spectral region, rice
species use in each work and the region of the study, which can be used as a reference of local
climate conditions. It is important to highlight that the local soil conditions were only taken into
consideration for the proposed methodologies in two individual studies [33,49]. With the exceptions
of [127] (which employed a publicly available dataset from the NEON 2013 Imaging Campaign in
California [128]), and [32,109,112-114,129] (which employed publicly available Landsat and/or
MODIS measurements), all the surveyed literature included their individual data collection
campaigns as part of their contributions.
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Table 1. Summary of most common sensor types used in spectral analysis studies for
rice cultivation applications.

Sensor type Commercial name Studies
Sensors that ASD QualitySpec Pro 350-2800 nm [130,131]
measure radiance or ~ ASD FieldSpec Pro Spectrometer, 350-2500 nm [36,132-136]
irradiance, as well ASD FieldSpec 3 Spectroradiometer, 350-2500 nm [75,96,137]
as transmittance and ~ ASD Field Spec 2 [11,138]
reflectance. Usually ~ ASD FieldSpec-FR (350-2500 nm) [48,139]
portable devices GER-2600 Spectroradiometer, 330-2600 nm [103]
GER1500 Spectroradiometer, 300-1100 nm [23]
HR-1024 Spectroradiometer, 350-2500 nm [140]
Portable ground MSR16 Radiometer Cropscan, 450—-  [76]
1750 nm
Hyperspec HEADWALL [10,11,141]
MS-720 Spectroradiometer, 350-1050 nm [142]
LI-1800 Spectroradiometer, 380-1100 nm [48,49]

Sensors based on a

spectrograph + CCD

system/optic
Multispectral
systems with
incorporated filters

ImSpector V10E Spectrograph, 390-1050 nm
ImSpector N17E Spectrograph, 8741734 nm
SP2500i Spectrograph

Tetra CAM: ADC Micro, ADC Lite system,
MiniMCA

[35,90,119,136,143,144]
[58,125,145]

[118,119]
[11,74,146-148]

Sensors with SPAD-502 Chlorophyll Meter, Measure the leaf [46,126]
onboard DSP transmittance in two wave bands: 400-500 nm, 600—

software for 700 nm

parameter Dualex 4 Fluorescence Sensor [46]
estimation

4.1. Biomass and vegetation estimation

Table 2 summarizes the most relevant works in hyperspectral imaging applications for
biomass and vegetation estimation. These studies allow for remote detection of individual rice
plants [33], common weeds [149] and large-scale landcover identification of the presence of
rice paddies [112,114,129]. In addition, several studies introduce the capability of estimating
the total Above Ground Biomass (AGB) of individual plants from their spectral
measurements [131,132,141,146].

Development of automated plant detection methodologies represent a useful tool for estimating
germination rates during early development stages, as well as determining the presence of weeds
in rice fields, which can hinder the development of rice plants and reduce yields. To this end, the
study [33] employs visible and NIR multispectral measurements, acquired using an UAV, to
discriminate rice plants from background soil spectral measurements. Supplementally, an in-depth
comparative study of the classification performance of various machine learning algorithms for
discriminating between rice plants and common weeds is presented in [149]. [84] study the optimal
height to operate a UAV to extract the Leaf area index LAI, and leaf dry weight (LDW) and
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evaluating the performance of hyperspectral images as a metric of how good their measurements
were.

Currently, leaf color charts are distributed to rice farmers in order to estimate the N levels
present in the plants. This visual cue is intended as a low-cost diagnostic tool in order to ensure
adequate fertilization levels and to maximize yields [150]. However, previous work on the spectral
properties of rice plants suggests that the 700-900 nm spectral region describes significantly
superior statistical separability between spectral measurements of rice leaves at different
fertilization levels [119,120,126,130,151]. Due to the fact that this optimal spectral range is outside
the visible spectrum (380—740 nm) [136], hyperspectral imaging has been adopted as an imaging
solution that is capable of visually capturing the differences in N levels in the appropriate spectral
range. Thus, timely monitoring of N status of rice crops with remote sensing can aid the optimization
of N fertilizer management and reduce environmental stresses for improving plant growth.

Table 2. Summary of most relevant work on the use of hyperspectral imaging for rice
cultivation applications for biomass and vegetation estimation in rice crops or landcover
classification.

Study Region Rice species Inferred magnitude  Acquisition Spectral region
[146] Colombia Indica IR64, Line Above Ground Unmanned Aerial 520-690 nm,
23 Biomass Vehicle (UAV) 760-900 nm
[131]  Sanjiang Plain, Kongyu Above Ground Manual 350-1800 nm
China Biomass
[141] China 152 Cultivars Above Ground Manual 400-1000 nm
Biomass
[132] Jiangsu, China Yliangyou 1, Above Ground Manual 350-2500 nm
Wuyunjing 24 Biomass
[112]  South Korea/ Not Specified (N/S) Paddy Rice Satellite 430-1200 nm
California Landcover
[114]  West Java, N/S Paddy Rice Satellite 479-841 nm
Indonesia Landcover
[32] Hunan, China N/S Paddy Rice Satellite 430-1200 nm
Landcover
[33] Rugao City, N/S Plant Presence UAV 430-900 nm
Juangsu,
China
[149] China N/S Plant Species Manual 415, 561, 687,
705,735, 1007 nm
[84] Jiangsu, China Wheat (Ningmai  Ratio Vegetation Manual 730, 815 nm

13, Huaimai 33), Index (RVI)
Rice (Nanjing 9108,
Lianjing 10)
[129] Nanchang, China  N/S Rice Paddy Presence Satellite 400-1200 nm

Spectral measurement sensors (either imaging or non-imaging spectrometers) have the sole
function of acquiring the spectral response of the target of interest [70]. That is, these devices are not
capable, nor is it their intended function, of directly measuring the physical magnitudes of relevance
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to rice crop health and productivity assessment efforts. For this reason, several studies have been
performed towards building signal processing models to estimate rice plant and soil conditions of
interest from their spectral responses. [23,103,117,127,144,148,153].

4.2. Chlorophyll and Nitrogen estimation

Table 3 summarizes the most relevant studies that use spectral measurements to estimate the
N [31,118,120] or Chlorophyll [137,144,152,153] contents in rice plants using a variety of
acquisition methodologies and processing techniques.

Of these physical magnitudes, Leaf Nitrogen Content (LNC) is the most common in the current
state of the art, due to its closer relationship to rice crop yields. While the majority of these
approaches attempt to directly estimate N levels from hyperspectral measurements, there have been
efforts in further refining the accuracy of these models by incorporating additional sources of
information, such as remote LIDAR measurements [74,117].

The LNC is an indicator of the N nutrients in the plants which an indirect variable extracted
under different techniques from visible, Near infrared (NIR) or Short Wave Infrared (SWIR) data. It
is used as indicator of the crops growth status, which it is related with the crop field. An estimation
of the N content indicators in rice crop leaves using to different leaf clip meters is presented in [31],
where two clippers provide an estimated value of N nutrient related indicators as: Chlorophyll,
Flavonoid Content and Nitrogen Nutrient Index (NNI). By linear regression a comparative
performance is presented for different fertilization rates and three experiments sets using various
types of rice species. In [120], LNC is estimated from random leaf leave samples were collected
from a single cultivar where different level of urea fertilizer is applied at seeding, tillering and
shooting stages. Fluorescence intensity and ratio where performed at lab at 350 nm, 460 nm and 556 nm
and compare the results and provides an insight of better performance of the regions where fluorescence
data is used. Similar than [120], in [118] and estimation of the LNC from different samples collected
at footing, heading and tillering stages. Additional their work propose a combine spectral index
using hyperspectral LIDAR and fluorescence LIiDAR. A study using SWIR to improve the
accuracy in the estimation of LNC using Continuous Wavelet Analysis (CWA) is developed in
[133], where they combine CWA and spectral index method using random data from a 4 set of
experiments using rice and wheat cultivar to extract Narea, and Nmass With the leaf mass area (LMA). A
difference of [133], in [120] use Back propagation Neural network BPNN combines with principal
component analysis to show the spectral response of LNC. A single spectral study in [49] computes a
spectral index and relates it to the N levels in canopy rice. In addition, it is of great interest to
detect the presence of rice plants in the early season in order to reseed specific areas with
convenient timing [33].
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Table 3. Summary of most relevant work on the use of hyperspectral imaging for rice

cultivation applications for Chlorophyll and Nitrogen Content Estimation.

Study region Rice species Inferred magnitude Acquisition Spectral region
[144] China Yongyou 4949 Chlorophyll N/S 539-910 nm
[137] New Delhi, India 13 Species Chlorophyll Manual 690, 700-750
nm, 940-1104
nm
[153] Japan Haenuki and Koshihikari ~ Chlorophyll UAV 327-763 nm,
SD 640-1050 nm
[46] Jiangsu, China  Oryza sativa L. Chlorophyll Automated Ground 360-1025 nm

[31] Jiangsu, China.
[120] Hubei, China

[118] Jianghan Plain,
China

[133] Jiangsu, China

[154] N/S

[74] Jiangsu, China

[148] Juangsu, China
[151] China

[117] China
[49] Taiwan
[76] Nanjing, China

[119] Hubei, China

[110] Heilongjiang,
China
[135] Jiangsu, China

[48] China, Japan

[130] Suizhou City,
China

[140] Southern NSW,
Australia

[23] Suwon, Korea

Ningjing-4, Wuyunjing-24 LNC

Yangliangyou 6

Yongyou 4949,
Yangliangyou 6

LNC

LNC

Yliangyou 1, Wuyunjing 24 LNC

N/S
Wuyunjing24,
Yliangyoul

N/S

Yongyou4949,
Yangliangyou 6

N/S

Tainung 67
Wuxiangjing 9,
Nipponbare, Huajing 2
Yongyou4949,
Yangliangyou 6
Longjing 31,

Longjing 21

Y Liangyou 1,
Wuyunjing24

Tsugaru Roman
Japonica, non-glutinous
Rice

Reizig, Sherpa

Hwasungbyeo,
Dasanbyeo,
Juanbyeo, SNU-SG1

LNC

LNC/Plant Nitrogen

Accumulation
(PNA)

N Content

N Content

N Content

N Content

N Content

N Content

N Content

N Content

N Content
N Content

N Uptake

N, Chlorophyll

System
Manual

Manual
Manual
Manual

Manual
UAV

UAV

Manual
Manual
Manual
Manual
Manual
Manual

UAV

Manual
Lab

Manual

Manual

375, 710,
850 nm
355, 460,
556 nm
360-800 nm

350-2500 nm
450-900 nm
490-900 nm

450-950 nm
538-910 nm

450-740 nm
400-1100 nm
610, 660,
680 nm
360-800 nm

670, 730,

780 nm

490, 550, 680,
720, 800 nm
350-2500 nm
538-910 nm

350-2500 nm

520-600 nm
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Study region Rice species Inferred magnitude Acquisition Spectral region

[130] China Japonica and non-glutinous N, Chlorophyll Manual 538-910 nm
rice

[75] New Delhi, India PRH-10 N, Manual 350-2500 nm

Phosphorus, Sulphur
concentration
[111] Rosasco, 43 Cultivars PNA Manual 450-700 nm
Gaggiano

Table 4. Summary of the most relevant work on the use of hyperspectral imaging for rice
cultivation applications for detection of Pests, Diseases, Heavy Metals and various

Pollutants.
Study Region Rice species Inferred magnitude Acquisition Spectral region
[126] Harbin, China N/S Disease Presence Manual 560, 620,
670 nm
[103] N/S Nipponbare Disease Presence Manual 900-1700 nm
[139] Wufeng, Taiwan TNG 67, TCS 10 Disease Presence Manual 350-2500 nm
[155] Anhui, Jiangxi and N/S Disease Presence Manual N/S
Hunan Province,
China
[34] Arkansas, USA  TIL 654.13 Disease Presence Manual 480, 760, 800,
1000 nm
[36] Jiangsu, China Sanyou 63 Leaf Pest Damage Manual 400-1000 nm
[35] Hangzhou, China Y Liangyou689  Pest Presence Manual 380-1030 nm
[115] N/S N/S Heavy Metal Manual 350-2500 nm
Concentration
[76] Suzhou, China Oryza sativa Heavy Metal Manual 420-980 nm
Concentration
[90] China Xiushi 134, ZhejingHerbicide Toxicity Manual 380-1030 nm

88

4.3. Pest, diseases, heavy metal and pollutants

Regarding the different stages of plant growth, the state of the art on hyperspectral image
analysis of rice plants at the seedling stage is focused on the detection of the presence of pests [35]
and diseases [103,139] that can severely impact yields by preventing plants from developing into
their productive stages. Conversely, studies on plants past the seedling stage are centered on the
maximization of crop yield through the determination of various chemical properties indicative of
plant health [127,152,153]. Due to the need to supply the growing world population with this basic
crop, it is important to know the development cycles of this plant, as well as the factors, both
climatic and environmental, that limit its development and yield, and the impact on human health. It
is also necessary to consider all the methodologies and technologies available for crop analysis
including hyperspectral images, canopy reflectance spectra, examine the mechanisms of pollutants
uptake and translocation in rice [13], Phenology, remote sensing and near-surface imaging
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spectroscopy, among others. The presence of various contaminants and/or diseases can negatively
impact the nutritional content of crops [35,108,103,139,156]. All the studies are summarized in
Table 4 where diseases, pest, heavy metal contaminants and Pollutants are presented.

4.4. Seed studies, rice lodging and other variables

Furthermore, hyperspectral imaging applications have been developed for specific aspects of the
rice cultivation industry beyond plant health and growing status, such as identification of specific
plant genotypes [137,145,149,157], and seed type and vitality identification [91,125]. These studies
address important concerns beyond the growing process and aid in the assessment of various aspects
of grain quality, viability and/or geographical origins. These studies are summarized in Table 5.

Table 5. Summary of most relevant work on the use of hyperspectral imaging for rice
cultivation applications for seed studies, rice lodging and other variables.

Study Region Rice species Inferred magnitude Acquisition  Spectral region
[50] éﬂ?:;ang’ N/S Seed Origin Manual 499-950 nm
[143]  Vietnam 90 Cultivars Seed quality: Shape, o) 385-1000 nm

length, width and colour
Zhongzheyou No.1,

[145] China 5 8 and 86 Seed Type Manual 1069-1558 nm
992, 1012, 1119,
. . 1167, 1305,
[125] China N/S Seed Vitality Manual 1402, 1629
1649 nm
. - 710-740 nm,
[142] Laos Oryza Sativa Grain Yield Manual 830 nm
[134] éﬂ‘i‘}':”g Xiushui 110 Panicle Health Manual 350-2500 nm
[158] Kyoto, Japan  Kinu-Hikari Protein Content Manual 400-1000 nm
South Korea Rice Geographical
[47]  and N/S /€ >eograp Manual 4001000 nm
. Origin
China
Heilongjiang, " Rice Lodging
[147] China Longjing 32 Classification UAV 400-700 nm
Taibao City, . Rice Lodging
[138] Taiwan Taikeng 2 Classification UAV VIS
[109] South Korea N/S Yield Satellite 400-890 nm

5. Signal processing methods

The mathematical relationship between the spectral measurements of rice plants extracted from
hyperspectral images, and the actual physical magnitudes of interest in the plants to be estimated is
highly nonlinear, and a nontrivial task to accurately determine [45]. When attempting to establish a
mathematical model that describes the relationship between two such magnitudes, it is important to
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carefully evaluate the available established methodologies for achieving this task. The most relevant
considerations in the surveyed literature regarding the specific methodologies used are summarized
in Tables 6 and 7.

In this regard, a significant subset of the surveyed literature employs regression-based
approaches to optimize for maximum correlation between specific spectral regions and the physical
magnitudes of interest [23,139,148], where the proportion of the dependent variable’s variance
that can be explained from the selected independent variables [159] is taken as a performance
measure (R? value). In these approaches, the spectral measurements (or a subset thereof) are
approximated to be independent variables, or predictors, in a linear fashion for the specific dependent
variables, or measured responses (such as N content, carbon content, etc.), being studied.
Additionally, several studies employ correlation analysis between the behavior of a reduced subset of
spectral bands and the target magnitudes of interest [49,127,157]. These approaches explore the
correlation coefficient r, {r € R|0 <r < 1} between individual spectral intensities X € R, and the
measured responses of interesty € R:

cov(x,y)
=== )
/s,%+s}2,

where cov(x,y) is the covariance of the spectral measurement x and the magnitude of interest y, and
% 32y are the variances of x and y, respectively. Several regression-based approaches perform a
comparative statistical study to find a subset of spectral bands with high correlation to the variables
of interest [31,132,152]. It is important to note that while this practice introduces an advantageous
computational complexity reduction, it discards a significant number of spectral measurements that
could be taken into consideration with the use of Principal Component Analysis (PCA) or similar
dimensionality reduction techniques [119,134]. For classification-oriented applications, the
surveyed literature presents a variety of methodologies including Support Vector Machines
(SVM) [50,125,126,149,159], Neural Networks [35] and Random Forest-based approaches [145].

Support Vector Machine (also, later generalized under the name Kernel Machine) classification
of HSIs is a binary approach that relies on finding an optimal separating hyperplane by maximizing
the perpendicular distance (given by support vectors) from the hyperplane to the closest data points
from the two classes on both sides of it. In the case that a linear hyperplane is not able to
satisfactorily discriminate between the two features with a significant margin using the
dimensionality of the features, it is possible to map the features to be classified to a higher-
dimensional space, in order to maximize class separability using a nonlinear kernel function (hence
the alternate description of kernel machine) [160,161]. Compared to modern approaches (particularly,
deep neural networks), SVM classification approaches consistently produce accurate results in
applications with the limitation of reduced availability of training data [162].

Neural Network classification of HSIs is a non-parametric approach that employs the
backpropagation algorithm [163] to train a neural network for pixel classification in a “black box”
approach. In this case, a neural network is setup to have as many input nodes as spectral bands in a
HSI pixel, one or more hidden layers with a variable number of nodes, and an output node consisting
of the class assignment or inferred magnitude estimation for the input information. Alternatively,
Convolutional Neural Networks (CNN) are Neural Network architectures optimized for operating on
spatially distributed data, as is the case with HSIs [147,155], as opposed to Fully-Connected
approaches that operate on a pixelwise manner [118,120,164]. While these approaches have recently
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introduced significant improvements on classification problems, they require vast amounts of
training data to produce accurate models, which include nontrivial processing hardware
requirements for the network training operation. These methodologies present the advantage of
producing accurate statistical models for rice cultivation in reasonable processing times without
the need of high-performance specialized hardware. However, the accuracy of the calculated
models shows a consistent disadvantage when compared to alternate, more computationally
complex, methodologies such as those based on PCA [103,119,126,134,165], Support Vector
Machines [50,112,117,125,126,130,144,151] and Artificial Neural Networks [117,119,130]. At the
cost of increased accuracy, it is important to know that these methods describe a higher
computational complexity, and it is important to take their required dedicated resource allocation and
computing time when designing a deployable hyperspectral image analysis-based application.

5.1. Classification-based hyperspectral imaging applications

In classification problems, where the employed methodologies produce discrete class
outputs for detection purposes, results are stated using the Accuracy metric, calculated by
dividing the number of accurately classified pixels from each respective study’s testing set
by the total number of pixels for each class [166]. As can be observed in several studies in
Table 6 [10,103,126,134,137,143,165], these discrete classification applications tend to produce
results with high accuracy. This can be explained by the high statistical separability of the target
spectra in these studies, which most commonly related to the presence various types of plant pests
and/or diseases, when compared to the spectra of healthy plant tissue and background contents in
specific wavelength ranges.

5.2. Regression-based Hyperspectral Imaging Applications

Contrary to classification-based approaches, applications concerned with estimating a
nondiscrete magnitude, such as LNC, from spectral measurements tend to describe lower
performance values [49,130,140,148,154]. This discrepancy can be explained by the considerably
larger continuous solution space of magnitude inference problems, compared to the discrete solution
space in classification problems [167].

In order to improve the specific performance of the surveyed methodologies, several
approaches incorporate an additional preprocessing step in order to maximize the statistical
separability of key variables of interest in the acquired hyperspectral data. Depending on the
required complexity of each methodology, this preprocessing step can range from a
computationally inexpensive subset selection and/or scaling on the values of key spectral
bands [130,133,144,148], to a more computationally complex operation, such as Linear
Discriminant Analysis PCA [103,119,126,134,165] that takes into account the behavior of the
relevant spectral signatures across the available spectrum.
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Table 6. Summary of signal processing methods for classification tasks using
hyperspectral measurements.

Study  Processing method Input variable Output variable Performance metric Performance

[137] ANOVA/CART  Spectral ReflectanceCultivar Species Accuracy 0.98

[126] PCA-SVM Spectral ReflectanceRice Blast Presence Accuracy 0.975

[103] PCAJ/Linear Spectral ReflectanceRice Blast Presence Accuracy 0.92
Discriminant
Method

[155] Convolutional RGB Image Pest Presence Accuracy. 70.0%-87.2%
Neural
Network

[34] Sequential Forward Spectral ReflectanceDisease Presence Accuracy 0.965
Selection (SFS)

[165] PCA+SVM Spectral ReflectanceQuinclorac Presence Accuracy 0.9

[112] Random Spatiotemporal Paddy Rice Map Accuracy 98.67%/93.87%
Forest/SVM Satellite Data

[114] EVI Thresholding Satellite Images Hazardous Flooding Overall Accuracy 0.7596
Classification

[32] CNN Satellite Images Paddy Rice Map R2 0.9945

[35] SPA/Neural Spectral Reflectancelnfestation Degree  Accuracy 0.95
Network
Method

[149] SPA + Weighted  Spectral ReflectanceCrop Class Accuracy 0.97
SVM

[10] Partial least square Spectral ReflectanceRice Origin Accuracy 0.99
discriminant Classification
analysis (PLS-DA)

[147]  Convolutional RGB + Rice Lodging Dice coefficient 0.9284
Neural Multispectral Classification
Network Image

[33] Decision Tree RGB, NIR, MS Rice Plant Presence Overall Accuracy, 92.56%/0.86

images Kappa Coefficient

[138] Maximum Hybrid spatio- Rice Lodging Accuracy 0.9384
Likelihood/Decisionspectral image Classification
Tree Classification

[129] NI/S Spectral ReflectanceRice Paddy Presence Kappa Coefficient 0.89

[50] SVM Spectral ReflectanceSeed Origin Accuracy 0.9167

[143] LDA + Random Spectral ReflectanceSeed Variety Precision 0.9859
Forest

[145] Random Forest Spectral ReflectanceCultivar Species Accuracy 1

[125] PLSDA, LSSVM, Spectral ReflectanceSeed Viability Accuracy 0.9367
ELM

[113] Linear Regression Spatiotemporal Cultivated Area R2 0.94

Satellite Data
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6. Current challenges

We have observed a series of common challenges across the reviewed literature that represent
limitations regarding the viability of deployment of hyperspectral imaging applications in the field.
These challenges are summarized in Figure 6.

Due to the difficulty and cost of obtaining hyperspectral images of sites of interest, some of the
surveyed studies perform field measurements at the locations of previously performed aerial
hyperspectral imaging expeditions. This temporal mismatch between hyperspectral and field-
collected measurements introduces a significant error into the final mathematical models due to a
myriad of possible condition changes (illumination, change in vegetation composition, erosion,
anthropogenic canopy changes, water content, etc.) between the acquisition of the input and target
model data.

Because the acquisition and processing of these images into useful results for precision
agriculture is an economically, computationally, and time intensive process, research efforts have
been focused on finding static relationships between the acquired spectral measurements and the
physical magnitudes of interest for a specific geography. Collectively, these approaches do not
incorporate the modeling of the productivity influence of additional factors that are at risk of
undergoing significant variations in behavior due to imminent climate change, such as shifts in
temperature trends, soil and/or water acidity, wind and water current patterns, seasonal duration
changes, among others. In addition, the surveyed literature is concerned with the study of the
behavior of specific rice cultivars under the variation of specific relevant factors, such as fertilization
levels. Thus, an important direction for future research is to begin working towards a unified
characterization model for various cultivars and their requirements. As it is, the performance levels
obtained in the surveyed literature do not necessarily imply that growing different cultivars under the
same conditions would provide similar results. An accurate future productivity model that is able to
adequately incorporate these factors would enable a significant increase in estimated yield
predictions for any region around the globe.

Table 7. Summary of signal processing methods for estimating physical magnitudes of
interest from hyperspectral measurements.

Study Processing method Input variable Output variable Performance metric Performance
[146] Multivariate regression Multispectral NIR Above Ground Correlation 0.76
Images Biomass
[131] Correlation Analysis  Spectral Above Ground R2 0.77
Reflectance Biomass
[141] Thresholding/Linear  Spectral Above Ground R2 0.94
Regression Approach Reflectance Biomass
[132] Linear and Nonlinear Spectral Above Ground R2 0.82
Regression Reflectance Biomass
[144] SVM Spectral Chlorophyll R2 0.55
Reflectance density
[153] TUI Spectral Chlorophyll Correlation 0.803
Reflectance density

Continued on next page
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Study Processing method

Input variable

Output variable Performance metric Performance

[152] Linear Regression

[139] Multiple Linear
Regression

[142] PLS Regression
[115] PLS Regression
[76] PLS Regression
[36] Linear Regression
[31] Linear Regression
[120] Fully-Connected NN
[118] Fully-Connected NN

[133] Continuous Wavelet
Analysis

Spectral
Reflectance

Spectral
Reflectance
Spectral
Measurements
Spectral
Reflectance
Spectral
Reflectance
Spectral
Reflectance
Spectral
Reflectance
Fluorescence
Spectra
Reflectance +
Fluorescence
Measurements
Spectral
Reflectance

[154] Multivariate regression Spectral

[74] Regression
[148] Linear Regression

[151] SVM

[117] SVM, BP-NN,
RBF-NN

[49] Correlation

[24] Color Visibility
Analysis

[152] Linear and Nonlinear
Correlation

[119] PCA/Neural Network
Method

Reflectance

Chlorophyll
density

Infestation
Degree
Estimated Yield

Cd-Pb Stress
Level

Cd-Pb
Concentration
RLF Damage
Severity

LNC

LNC

LNC

LNC

LNC

RGB/MS/CIR DataLNC / PNA

Spectral
Reflectance
Spectral
Reflectance
Spectral
Reflectance and
Fluorescence
Spectral
Reflectance
RGB Image

Spectral
Reflectance
Spectral
Reflectance and
Fluorescence

LNC

LNC

LNC

LNC

N Fertilizer
Level Needed
LNC

LNC

R2

R2

R2

R2

R2

R2

R2

R2

R2

R2

R2

R2
R2

R2

R2

R2

R2

R2

R2

0.84 (Sunlit Leaves),
0.9 (Shadowed
Leaves)

0.889

0.873

0.90 for Cd and 0.92
for Pb

0.592, 0.013

0.987

0.84

0.867

0.81

0.77
0.72

LNC 0.81. PNA 0.84
0.56

0.73

0.979

0.679
0.998
0.78

0.912
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Study Processing method Input variable Output variable Performance metric Performance
[110] Linear Regression Spectral LNC R2 Elongation stage:
Reflectance 0.68; Heading stage:
0.85
[135] Stepwise Multiple Spectral LNC, PNA R2 LNC: 0.20, PNA:
Linear Regression Reflectance 0.73
(SMLR)
[48] PLS Spectral Canopy N R2 0.917
Regression Reflectance Content
[130] SVM Hyperspectral LNC R2 0.75
LIDAR
Measurements
[140] PLS Regression Spectral LNC R2 0.84
Reflectance
[23] Linear Regression Spectral LNC R2 0.84
Reflectance
[130] SVM, MLP-NN, RBF- Spectral LNC R2 0.75
NN Reflectance
[75] Correlation Analysis  Spectral N, Phosphorus, R2 N 0.80, P 0.69, S
Reflectance Sulphur 0.73
[134] PCA + SVM Spectral Panicle Health ~ Accuracy 0.9914
Reflectance
[111] Linear regression, K- RGB Image PNA R2 0.95
means Clustering
[158] PLS Regression Spectral Protein content R2 0.76
Reflectance
[84] Linear Regression Spectral RVI R2 0.81
Reflectance
[109] GRAMI Landcover/Spectral Rice Yield Overall Accuracy  89.5%-90.2%

Reflectance

Further, a study for hyperspectral images mountain forest canopy suggests that there is a
nontrivial discrepancy in the measured spectral responses of remotely sensed canopies due to
topographical irregularities [168]. While this is an issue that is less prevalent in most current rice
fields due to their conventionally flat topographies, it is within the realm of possibility that planting
areas will expand to less favorable topographies in the future due to the increasing need for
additional farmland to support the growing population and compensate for the nutrient depletion of
existing farmland.

Rice cultivation and, by extension, any hyperspectral imaging-based applications for its
improvement, is a highly multivariate dynamic problem where a variety of intertwined factors such
as soil composition, location, local macro/microclimates, fertilization levels, fertilizer usage, farming
practices and a myriad of additional factors can impact the viability of a given method outside of the
conditions present in individual research efforts. Given the imminent threat of global climate change
which, beyond the effects of changes in climate, can have additional effects on rice cultivation
practices, among which can be migration to new agricultural regions with more favorable climates
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but different soil chemical properties and the emergence of novel rice cultivars better suited to these
conditions. In addition, even small supply chain disruptions can have a significant impact on the
composition and efficacy of the various production inputs used in precision agriculture.

The surveyed literature consists mostly of studies performed over 1-5 growing seasons in a
given region with known conditions. Currently, shifting climate dynamics around the world
potentially threaten the long-term usability of the studies performed for any given region. Thus,
hyperspectral imaging applications for rice cultivation will be required to take into account several
dynamic factors and, most importantly, adequately model their influences on time-resolved recorded
spectral measurements over multiple decades, whenever possible. It is our consideration that
addressing these considerations will play a critical role in consolidating the long-term deployability
and effectiveness of a given contribution in the face of imminent climate change.

Temporal mismatch
between hyperspectral and
field-collected

measurements

@&

| Modeling of productivity
influence of factors that are
at risk of undergoing
variations due to climate

\ change

{ Solutions that provide
succinct, actionable
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\_sytems

Discrepancy in measured
spectral responses due to
topographical irregularities
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Figure 6. Challenges that limit the viability of deployment of hyperspectral imaging
applications in rice cultivation.

Moreover, the lack of a standardized, publicly-available dataset for the development of signal
processing methodologies for various aspects of the rice cultivation using hyperspectral images
requires individual research groups to plan and execute their data collection expeditions over
significant stretches of time, spanning up to various cultivation cycles [23]. Beyond this, it hinders
the capability of research groups in different geographies to accurately compare their results to the
available literature by isolating the differences in spectral responses between local cultivars and soil
compositions. In the surveyed literature presented in Tables 2 to 5, it is apparent that a significant
majority of studies relies on manual acquisition of data using specialized spectral measurement
equipment, such as spectrometers and/or hyperspectral cameras. These approaches require, in
addition to the nontrivial matter of the equipment acquisition, skilled personnel capable of operating
the equipment in a manner conductive to estimating the relevant magnitudes for a given application.
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These concerns present an important limitation on the widespread deployment of laboratory-derived
innovation to applications in the field. In contrast, a significant minority of the surveyed literature
describes systems capable of automated acquisition using UAVs [33,74,135,138,146-148,153]. In
order to provide better accessibility of the technological advances being developed, it is our
consideration that it is necessary for either public or private actors to further advance the
consolidation and deployability of these analytical studies in order to facilitate their availability as a
service, either directly to crop farmers in order to maximize the efficiency of their efforts, or towards
funding agencies in order to streamline the process of evaluating the development of their
investments, and better calibrate their investment return expectations to increase availability of
funding sources for crop producers. One major limitation consistent across the majority of surveyed
literature is the use of manual measurements to compute the published models. In order to minimize
potential ongoing costs for widespread hyperspectral technology deployments to rice growers, it is
important to continue producing models based on UAV-acquired hyperspectral data. These
approaches enable the acquisition of a significantly higher volume of data, in an easily scalable
manner according to plantation size with reduced labor requirements. On the topic of widespread
deployability to growers, it is our consideration that additional research effort is required on the
development of solutions that provide succinct, actionable insights to end users to maximize the
effects of their labor. An example of such applications is the work published in [24], which uses the
inferred LNC to provide end users with an indication of the required fertilizer levels to be applied.
Beyond the possibility of providing instructions to a human operator, further work on these
applications can play a pivotal role in the context of a precision agriculture system that distributes
fertilizers through automated actuators with little to no human intervention, further reducing the
potential impact on food production due to population migration and worker shortages.

It is important to highlight that most previous studies include the cultivation of rice plants under
predefined conditions in a controlled environment in order to isolate the relevant parameters for each
study. Thus, in order to successfully perform a large-scale deployment of the findings of the
surveyed literature, it is required to dedicate future research efforts in the modeling of the influence
of various local conditions on the health and productivity of rice crops outside of the specific regions
of study. Success in these efforts would enable efficient deployments based on these findings in a
wider variety of regions with different soil compositions and climatological conditions. In addition,
in the current atmospheric conditions, it is becoming increasingly necessary to model the influence
of atmospheric pollution both on the health of rice plants in existing plantations, and on the viability
of soil for the informed allocation of land for new plantations in order to satisfy growing production
needs.

7. Conclusions

The current review synthesizes and highlights the most relevant works regarding the use of
hyperspectral imaging sensing technology and hyperspectral image processing algorithms for the
estimation and monitoring of various aspects of the rice cultivation process. The significant
contributions in literature are summarized according to their objectives and summarized in tables
according to the specific constraining factors considered such as biomass and vegetation estimation,
landcover classification of rice growing sites; Chlorophyll and N content estimation; Studies of
diseases, pests, heavy metals and other pollutants’ effects on rice crops; Studies focused in various
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seed properties, lodging and others variables. Relevant information about the studies performed are
presented, such as the acquisition methodology, considered spectral region, rice cultivars used in
each work and the region of the study, which can be used as a reference of local climate conditions.

The hyperspectral signal processing methods used in rice production are summarized in terms
of whether the objective of the individual studies is to infer a specific magnitude, or to classify the
spectral measurements into discrete classes. Further, the specific approach used in each study, where
the most relevant methodologies are discussed, such as statistical, linear or multiple spectral
transformations and combined advanced methodologies. Additionally, the current review identifies
the common challenges present across the proposed hyperspectral systems for rice cultivation that, in
our consideration, are highly relevant to the goal of developing widely deployable applications of
this technology, with the objective of supporting the efficient agro-industrial production of rice crops.
The widespread deployment of the surveyed technological advancements is crucial for achieving
global sustainability requirements, which is an important challenge in the current age. Further, these
developments enable the advancement of various important global challenges related to uplifting
communities from poverty, and to provide them with equal opportunities in a manner that is
environmentally sustainable.

Regional or country-scale remote sensing deployments of rice field mapping and yield-
estimating technologies can be a valuable planning tool for policymakers and help to reach
established Sustainable Development Goals. Successful integration of these methodologies into the
decision-making process can significantly reduce potential food waste and economic losses through
more accurate import/export rates. For these reasons, it is of great importance for upcoming research
to focus on the development of low-cost, user-friendly spectral imaging devices that can be more
feasibly deployed in growing operations of varying scales.

Finally, in order to more effectively extract as much information from the necessary higher
volume of time-resolved hyperspectral remote sensing images, and adequately model the influence
and trends of shifting climate conditions and its effects on rice cultivation in a precision agriculture
setting, it is imperative to take advantage of any developments in multidimensional signal processing
methodologies for feature extraction applications.
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