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Abstract: Hyperspectral imaging has become a valuable remote sensing tool due to the development 

of advanced remote acquisition systems with high spatial and spectral resolution, and the continuous 

developments on more efficient computing resources to handle the high volume of data. For this 

reason, hyperspectral image analysis has found important uses in precision agriculture, where the 

health status of crops in various stages of the production process can be assessed from their spectral 

signatures. This has similarly been the case for rice cultivation, which represents one of the most 

valuable crops worldwide in terms of gross production value, global consumption rates, and food 

security reserves. To maximize the productivity of this activity and minimize economic and food 

crop losses, various precision agriculture techniques to optimize yields by managing production 

inputs and monitoring plant health have been developed. Such applications include landcover 

classification, cultivar identification, nitrogen level assessment, chlorophyll content estimation and 

the identification of various factors, such as the presence of pests, weeds, disease or pollutants. The 

current work highlights and summarizes various aspects of interest of the main studies on 

hyperspectral imaging applications for rice cultivation. For instance, several tables summarize the 

most relevant work on the application of hyperspectral imaging for rice cultivation based on their 

acquisition methods, spectral region, rice species, and inferred magnitudes, among other parameters. 

In addition, we identify challenges across the field that limit the widespread deployment of 

hyperspectral imaging applications. Among these challenges, adequate modeling of various dynamic 

local factors and their influence on the analysis is a main concern. 

The main objective of this review is to provide a reference for future works that addresses the 

main challenges, and accelerate the development of deployable end user technologies to meet current 



274 

AIMS Agriculture and Food Volume 6, Issue 1, 273–307. 

global Sustainable Development Goals, in a manner that is resilient towards the increasingly 

dynamic growing conditions of rice plants expected by global climate change. 

Keywords: precision agriculture; hyperspectral; remote sensing; rice; spectral analysis 
 

1. Introduction 

Rice (Oriza sativa L.) is the main food staple for more than half of the world’s population, 

particularly those living in some of the most populous countries, such as China, India and 

Japan [1–3]. Humans have a long history of cultivating rice crops; Rice was first domesticated 

approximately 9000 years ago by people living in the region of the Yangtze River valley in 

China [4]. For the Food and Agriculture Organization (FAO) of the United Nations (UN), world 

rice production forecasts an overall increase of 10.3 million tons per year to a new maximum of 

769.9 million tons in 2018 [5], at normal growing conditions. This growth in production output 

driven by human consumption, which would decrease other uses, such as industrial and feed uses. 

Due population growth, global per capita food consumption showed an increase (0.4%) from 53.7 kg 

in 2017, to 53.9 kg in 2018. In terms of global rice consumption, by 2020 this amounted to a total of 

379.035 million tons for the major consuming countries (China, India, Indonesia, Bangladesh, 

Vietnam, Philippines, Myanmar, Thailand, Japan and Brazil) [6]. Rice cultivation activity currently 

faces a series of challenges in order to meet current and projected future global consumption rates. 

Of most importance is the limited opportunity for expansion due to outright decline of available 

arable land [7,8], the increasingly limited availability of fresh water for irrigation due to climate 

change, increased industrial activity and urban freshwater usage [7,9–11]. Moreover, several 

additional factors have been identified as key contributors to declining rice crop yields such as the 

narrow genetic background of rice plants, inadequate soil drainage, which contributes to increased 

salinity and alkalinity over time, soil nutrient and organic matter deficiencies, and further soil quality 

decline from fertilizer and pesticide overuse [7,12]. Finally, the prevalent lack of strong research 

extension-farmer relationships, farmer organizations and public-private partnerships limits the 

capacity of producers to overcome these challenges [7]. 

Due to the urgent imminent requirement of supplying the growing world population with a 

sufficient volume of rice crop, it is important to know the development cycles of this plant, as well as 

the factors, both climatic and environmental, that limit its development and yield. In addition, it is 

important to study the influence of environmental factors, such as the presence of heavy metals or 

other contaminants, in the nutritional profile and potential toxicity of cultivated rice. It is also 

necessary to consider all the methodologies and technologies available for crop analysis such as the 

mechanisms of pollutants uptake and translocation in rice, phenology, canopy reflectance spectra, 

remote sensing, near-surface imaging spectroscopy and, of particular interest to this work, 

hyperspectral imaging [13]. 

The tangible and potential improvements introduced by Information and Communications 

Technologies (ICTs), particularly from the disruptive fields of machine learning and digital signal 

processing and including widely-deployed acquisition technologies such as the Internet of Things 

(IoT) [14,15], biosensors [16] and wireless sensor networks [17], have impacted such a wide variety 

of fields that the UN has stated their confidence that these technologies have changed the modern 
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world, and possess the potential to continue to do so in a manner that makes them key to fulfilling 

their Sustainable Development Goals [18]. These technologies have introduced tangible benefits in 

various precision agriculture applications for rice cultivation applications [19–22]. Additionally, 

these technologies have enabled improvements in automated crop monitoring [23], efficient 

production input distribution [24], and crop quality evaluation tasks [25]. Several of these 

applications have been academically proposed but have faced difficulties in reaching sufficiently 

large-scale deployments as to shift the established agricultural production paradigms. Precision 

agriculture implied the use of sensors and advanced imaging technique to obtain data to monitoring 

the health status of the crops [26]. Hyperspectral imaging systems have gained notable relevance due 

to the advanced development of remote sensing systems with higher spectral and spatial resolution 

and have been used as a tool in precision agriculture in studies of morphological and physical stages 

of different crops however does not have been fully exploited. This spectral sensing technique allows 

the study of crop biophysical and biochemical properties, soil characteristics and crops classification 

as well to monitoring large fields of cultivation. Due to the advances in optoelectronics and data 

acquisitions systems HSI is now more accessible and allows the access to low cost and small size 

hyperspectral sensors. [27]. Additionally, a plural development of algorithms to work with high 

amount of data to extract information from the spectral signature of the materials with advanced 

techniques such as linear regression, nonlinear regression, and combined methods that 

incorporate machine learning techniques such as Support Vector Machines, neural networks and 

others [26,28–30]. Recent studies use the spectral measurements of various crops to infer important 

magnitudes such as nitrogen (N) content [31], landcover classification of cultivated areas [32] 

and individual plants [33], detection of plant diseases [34], detection of pest presence [35] and 

damage to plants [36] and various others, which creates opportunities for improved yield and process 

efficiency in rice cultivation through their use in smart remote sensing applications. 

The main contribution of this work is to provide the community with an up-to-date survey of the 

most relevant works regarding the use of hyperspectral imaging sensing technology and 

hyperspectral image processing algorithms for the estimation and monitoring of various aspects of 

the rice cultivation process without the requirement of a field-wide deployment of individual sensors. 

Additionally, we provide a comparison of the signal processing methodologies used in the most 

relevant studies and present the main challenges for application deployments in the field. The 

methodologies proposed in these studies can potentially contribute to the cost reduction of 

measurement systems in precision agriculture operations, and alleviate the human labor requirements 

for the processes of assessing the health and expected productivity of rice plants in all its stages, 

from seeding to harvest on the field. Advances made towards alleviating these challenges are of 

special interest to all involved in the development and deployment of innovative precision 

agriculture applications. Particularly, funding agencies for rice producers such as banks, insurance 

companies, private investors, and other entities who would benefit from more accurate return of 

investment (ROI) estimates. With more informed yield estimates, more accurate risk assessment 

studies can be conducted by these agencies and more producers can potentially benefit from 

increased availability of funding sources for their activities. In this manner, it is our hope that this 

work serves as a starting point for future research efforts. 
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2. Constraining factors in rice cultivation 

Rice production, like other types of crops, have been adapting farming methods to deal with 

problems connected to climate change, the growing demand for food, and the limitation of the 

amount of land for cultivation. The key challenges for rice cultivation are: sea water intrusion which 

is a problem of salinity in landscape areas (particularly sea level rise zones in Asia), deforestation, 

variability in precipitations patterns and water scarcity that requires a dynamic between availability 

and management of this resource [37]. Those problems require the use of new rice species that are 

resistant as well as new technologies to support monitoring, predictive analysis and water saving 

systems which are commonly linked to precision agriculture. Precision agriculture is a set of signal 

processing techniques and specialized machinery, sensors, actuators and various information systems 

in order to optimize crop production in agricultural systems [38]. Thus, the main object of study of 

this field is to further increase the effectiveness of agricultural activity by incorporating additional 

variables of interest into the decision-making systems from sensor technology developments, 

improving decision making processes through various algorithms, and new innovations in actuator 

technology. In this manner, the potential yields of the agricultural process are maximized by 

continuously ensuring the optimal conditions for adequate plant growth and development. In most 

ecosystems around the world, Photosynthesis is one of the most important processes for capturing 

energy from sunlight. The balance of the photosynthetic and respiration processes in plants is crucial 

for understanding their growth and productivity expectations, as well as the overall carbon cycle of 

ecosystems [39,40]. 

2.1. Chlorophyll and Nitrogen 

Chlorophyll is an important indicator of the photosynthetic capacity and vegetation stress in 

plants, changing its concentration in response to environmental conditions and solar radiation [41,42]. 

In previous studies, plant chlorophyll content has been identified to describe a close relationship to 

the gross food and biomass production capabilities of plants [43,44]. Further, there exists an 

established correlation between the measured N levels present in plant leaves and its expected 

productivity levels [45]. Thus, N is considered as a limiting element for plant growth since is the key 

nutrient parameter determining the photosynthetic functioning and productivity in rice crops [46]. N 

deficiency in plants can lead to lower chlorophyll content, lower photosynthetic assimilation, less 

biomass production, and reduced grain yield. On the other hand, a high content of N can improve 

chlorophyll density, which results in higher levels of photosynthetic activity and, by extension, 

productivity levels [47]. However, increasing N levels through external production inputs, such as 

fertilizers, can cause a series of environmental pollution issues and even diminished yields when 

fertilization become excessive [48]. The excess reactive N, derived from over and/or improper 

application of N fertilizers, may produce detrimental effects on public health and ecosystems. Excess 

N deposition in atmosphere considered recognition as a potent contributor to global warming and 

stratospheric ozone depletion [49]. 
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2.2. Carbon cycle 

In addition, the study of the vegetation ecosystem carbon cycle attracts considerable interest to 

assess carbon sequestration capability [23,50]. In the face of rising global atmospheric CO2 levels 

that contribute to climate change, elevated carbon assimilation in crop plants has promising effects 

on both crop yields and sequestration capabilities to aid in lowering the overall carbon levels in the 

atmosphere [51]. 

2.3. Soil nutrients 

A key factor to consider in precision agriculture is the amount of nutrients present in the soil. 

Nutrient availability in soils play an important role in agricultural productivity, food security and 

agroecological sustainable development [52,53]. Parameters such as soil moisture, organic carbon, 

organic matter, heavy metals and soil nutrient contents are common soil properties and should be 

consider in prediction models for reducing soil nutrient loss and improving soil fertilization 

management practices, based on more robust and more sensitive analytical techniques, to 

complement plant information. To this end, specific wavelength ranges in aerial hyperspectral 

images have been used to characterize the nutrient content and distribution over regional scales [53]. 

2.4. Heavy metal pollution 

Due to the rapid development of the industry economy in adjacency to agricultural land, rice 

paddies have been subjected to heavy metal pollution in some areas [27,54,55]. Some metals as 

cadmium (Cd), arsenic (As), and lead (Pb) are of great concern. It is known, that in China, for 

example, nearly 20 million hectares of cultivated land is contaminated with metals, resulting in about 

12 million tons of contaminated grains which translate to about 2.4 billion US dollars of economic 

loss per year. Heavy metal pollution is becoming a worldwide concern to both agriculture and human 

health. One of the most contaminant elements is Cd, characterized as a toxic heavy metal, because 

either can contaminate the soil with a high mobility in living organisms, or have toxic effects on rice 

expose to this metal. As of constants applications of N fertilizers in agriculture, many soils become 

more acidic allowing Cd being easily absorbed by plants [13]. Cd is transferred from soil to rice and 

accumulates in rice plants and grains and then is enriched in the human body thought the food chain, 

thereby threatening human health. The high mobility of Cd causes effect on rice plants and crops 

exposed to this metal by interfering with the physiological activities of plants, such as photosynthesis, 

gaseous exchange, and nutrient absorption, to cause reduction in plant growth and dry matter 

accumulation [56]. In addition to crop health, heavy metal pollution has been demonstrated to 

negatively impact human health, and to cause effects such as anemia, cancer, heart failure, 

hypertension, cerebral infarction, proteinuria, severe lung damage, eye cataract formation, 

osteoporosis, emphysema, and renal insufficiency [13,57,58]. 

2.5. Water management 

Shifting weather patterns as a result of imminent climate change is a growing concern for 

government agencies worldwide due to the potential shifting in water availability around the 
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world [59,60]. Failure to adapt proper water management practices can have significant adverse 

effects on the food security of a given region. For the purposes of properly assessing and managing 

both the quantity and quality of available water resources, hyperspectral imaging applications have 

been devised in various regions [61–64]. On the subject of hyperspectral imaging applications 

for water management precision agriculture, there is a growing interest in monitoring and 

managing drought stress to maintain high production levels in intensive crop farming 

applications [65–69]. Through a combination of drought-tolerant cultivars and precise water 

resource availability monitoring, irrigation practices can be optimized in order to ensure the 

continued increase in yields and food security for communities in drought-prone areas. 

3. Hyperspectral imaging 

Hyperspectral images provide valuable, spatially-resolved information for remote sensing 

applications in hundreds of individual wavelengths beyond the visible spectrum.  With the increase 

of available spectral information about their targets, it is possible to perform accurate classification 

of objects and/or materials within a spatial scene of interest. This ability has demonstrated to be of 

use in fields such as studies of the atmosphere, vegetation, agriculture and coastal environments. 

Hyperspectral imaging has important applications in precision agriculture, where the health status of 

crops in different growth stages can be assessed from their spectral signatures. 

Hyperspectral imaging sensors are spatial measurement devices that capture the spectral 

behavior of a scene of interest in the form of many simultaneous digital images, each representing a 

narrow spectral region across a continuous or discontinuous spectrum [70]. When a given material is 

exposed to a light source of a known spectral bandwidth, it emits, absorbs, and/or reflects specific 

portions of the electromagnetic spectrum according to its composition. This material-specific 

response is known as a material’s spectral signature [70]. As illustrated in Figure 1, this information 

is stored in a cubic data structure, where individual spectral bands are “stacked” on top of each other, 

ordered by their individual wavelengths.  

With this information, an observation of the measured spectral responses allows for the 

classification of different materials, or the observation of specific compositional qualities of interest 

in biological subjects. This technology has been applied to water resources and flood management, 

food quality assessment, medical diagnosis, military applications and various others [29,71–73]. Of 

particular importance to the current work, the advantages introduced by hyperspectral image analysis 

in precision agriculture are crucial for monitoring the effects of various factors on the spectral 

response of plant tissues such as fertilization [74], micronutrient content [75], pest damages [36], 

pollutant uptakes [76] or extreme conditions, such as droughts and flooding in localized 

regions [77,78]. From the measured variations in spectral responses, further processing of spectral 

data can determine the effects of these factors on the safety and productivity of crops. In order to 

provide images with a high spectral resolution, hyperspectral imaging devices’ construction requires 

complex optomechanical components, which limits their deployability due to increased weight, 

volume and power requirements. As illustrated in Figure 2, these devices can be mounted on various 

platforms such as satellites [79], aircraft [80], Unmanned Aerial Vehicles (UAV) [81], or handheld 

devices which can be used in the field or in laboratory settings. Due to the fact that each platform 

provides different tradeoffs regarding spatial resolution, spectral resolution, measurement noise, 

coverage and/or deployment costs, the selection of the optimal imaging platform is application 
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specific. Hyperspectral imaging enables researchers and plant breeders to analyze various traits of 

interest like nutritional values in high throughput [82]. For these authors, it is necessary to obtain an 

optimal design of a reliable calibration model, linking the measured spectra with the investigated 

traits. It is important to consider, the inclusion of samples from several time and locations to improve 

the predictions of the investigated nutrient trait at small calibration set sizes. However, some models 

obtained have some limitations because they work only in certain environments and are not 

transferable to others, for this reason they should be upgraded with new calibration data to enable a 

reliable response of desired traits. 

 

Figure 1. Hyperspectral Imaging Technology. Top: Common acquisition platforms. 

Bottom: Spectral range and resolution for various spectral imaging technologies. 

Another important aspect to consider in agriculture in general, and specially in rice cultivation, 

for setting calibration of remote sensing hyperspectral imaging, is the spatial distribution of soil 

nutrients which depends mostly on field sampling and laboratory analysis, but in some cases, result 

inefficient and time consuming [53]. Nevertheless, applying variables to predict soil nutrients is a 

key means of clarifying their spatial variations; is in our opinion, to select carefully representative 

sampling field sites followed by the proper laboratory analysis of selected parameters e.g. N, 

phosphorus, and soil potassium contents of soil due to they are closely related to nutrient cycling for 

growth and fertilizer application in human activities, to support all the calibration models to get more 

accurate hyperspectral imaging data. 
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In the context of precision agriculture, the introduction of hyperspectral imaging presents 

some important advantages as a noninvasive observation and/or monitoring methodology that 

does not interfere with crops’ growth process. In addition, a single aerial hyperspectral image 

provides a higher volume of detailed information about the developmental progress and chemical 

composition of both the plants and soil in a reduced labor-intensive manner compared to laboratory 

analysis of field samples. With the objective of estimating productivity levels, previous work on 

the spectral analysis of agriculture hyperspectral images has determined mathematical models 

that describe the relationships between the spectral behavior of rice, considering both individual 

plants and canopies and their chlorophyll, N and total carbon content [23,49,83]. Similar studies 

have been conducted for additional food crops such as wheat [84], corn [85,86], barley [82] and 

others [87–91]. 

In addition, hyperspectral images have been used to estimate various agriculturally relevant soil 

properties such as carbon content [92–94], heavy metal content [95,96], salinity [97], pH [98] and 

overall fertility [99]. Moreover, previous studies have demonstrated the possibility of hyperspectral 

image-based methodologies for the detection of fungal organisms and toxins in both crop plants and 

food products, which hinder the productivity of plants [100–103], contribute to additional levels 

of food waste [104,105], and have adverse effects on human health when consumed [106,107]. 

Finally, hyperspectral imaging has been employed for detecting the presence of heavy metal 

contaminants in the soil [106] and crop plants themselves [108]. 

 

Figure 2. Hyperspectral Image signal model, showing a three-dimensional hyperspectral 

cube as a “stack” of individual spectral bands, and individual hyperspectral pixel spectral 

responses. 

4. Hyperspectral imaging for rice cultivation applications 

In this section, we highlight and summarize the most relevant contributions of hyperspectral 

imaging rice cultivation applications in different stages of plant growth, for various quantities of 

interest. After reviewing 168 articles of the most relevant literature, the most significant studies in 

hyperspectral rice studies includes a total of 26 (49%) studies aimed at Chlorophyll and/or N 
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estimation, 11 (19%) for various seed studies, 11 (19%) for biomass and vegetation quantity 

estimation and 10 (17%) for detection of pests, diseases and various pollutants. The distribution of 

studies is illustrated in Figure 4b. 

Furthermore, the significant contributions in literature are organized, according to their 

objectives, in Tables 2 to 5. Table 2 lists the surveyed studies relative to biomass and vegetation 

estimation in rice crops or landcover classification of rice growing sites; Table 3 summarizes 

significant work concerning chlorophyll and N content estimation; studies of diseases, pests, heavy 

metals and other pollutants’ effects on rice crops are summarized in Table 4; studies focused in 

various seed properties, lodging and others variables are presented in Table 5. 

 

Figure 3. Spatial distribution of previous works on the use of hyperspectral imaging for 

rice cultivation applications. 

For rice cultivation, the studies in Tables 2–5 contemplate different rice species, inferred 

magnitudes such as total N content, chlorophyll, seed type, viability and/or origin, disease and plague 

presence, herbicide toxicity, carbon content, and the spectral region in which these properties 

manifest as a measurable spectral response in plants or cultivated rice. Nevertheless, only 20% of 

the reviewed literature examine soil variables and their direct relation with rice plant growth and 

health [31–33,49,76,109–115], especially to set up a single data base which appraise both to 

establish accurate calibration model for remote sensing imaging predictions. As observed in Tables 2 

to 5, the majority of rice studies are executed in Asian locations, particularly in mainland China, as is 

illustrated in Figure 3. Further, the predominant acquisition methodology in the surveyed literature is 

manual acquisition, where spectral measurements are captured in the field by handheld spectral 

measurement devices. It is important to know that, while most handheld devices measure a single 

spatially averaged spectrum (depending on the instrument’s Field of View), the insights obtained 

from the studies on collected spectra can be applied to spatial HSIs if/when available. The 

justification for the use of handheld spectrometers is twofold: first, there is a limited number of 

satellite missions with onboard measurement devices that are relevant to agricultural applications in 

adequate spatial resolutions with public data accessibility. Second, for the purposes of a single or 

small amount of studies, there is a significant decrease in cost and planning time requirements when 

using handheld devices in comparison to mobile acquisition platforms, such as UAVs. Figure 1a 
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illustrates the distribution of employed sensor platforms for hyperspectral imaging of rice, showing a 

clear majority of handheld measurement devices, followed by UAV-mounted sensors. Additionally, 

the majority of the studies are performed on a nonstandardized plurality of individual rice cultivars, 

which have not been spectrally catalogued according to their visible or NIR spectral responses for 

future reference.  

 

a) Distribution of surveyed literature according to sensing platform. 

 

b) Distribution of surveyed literature according to the intended magnitude to estimate or classify. 

Figure 4. Spatial distribution of previous works on the use of hyperspectral imaging for 

rice cultivation applications, a) according to the sensing platform; b) according to the 

estimated or classified features. 

This problem is further compounded by the continuous selective breeding of improved rice 

cultivars with attractive features for individual regions such as resistance to heat/cold, pests, presence 

of pollutants or increased productivity for a given amount of fertilizer input. For this reason, signal 

processing methodologies for precision agriculture of rice crops must be robust enough to 

accommodate for slight variations in spectral responses from newly introduced rice cultivars, in 

addition to various factors that are vulnerable to imminent shifting climate conditions, such as 

drought/flood responses and soil quality [55]. 

A large part of recent studies is focused on the use of hyperspectral reflectance data. That is, the 

evaluation of the spectral behavior of an incident light’s fraction of reflected photons off an object of 

study. However, a subset of studies includes the fluorescent spectrum, which are obtained by 

capturing the spectrum of the light emitted by the target of interest when exposed to an ultraviolet 
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(UV) light source. Due to the low intensity of the emitted light, fluorescence studies tend to be 

limited to laboratory environments, where the reflectance component of other light sources can 

introduce additive noise to the fluorescence spectral measurements [116–120]. 

 

Figure 5. Distribution of surveyed literature according to the physical location of measurements. 

While there exist various hardware configurations for hyperspectral image acquisition such as 

Whisk Broom [121], Push Broom [122] and Computer Tomography Imaging Spectrometers [123], 

the current study is focused on the study of the measured spectral response data. Table 1 summarizes 

the most commonly used sensors in studies utilizing multispectral and/or hyperspectral imaging 

devices for rice cultivation applications, according to their operating principles. 

For applications where hyperspectral reflectance is measured in the field, the incident light from 

the sun is considered. This presents an advantage in crop field applications, where the use of the sun 

as a light source reduces the complexity of the acquisition platform. Conversely, in laboratory 

measurements, a broadband illumination source is employed [103,124–126]. Across the reviewed 

literature, we found that a total of 37 studies (63%) performed measurements in the field, while 15 

(25%) performed lab measurements with an artificial light source. The proportion of these studies, is 

illustrated in Figure 5, including the 7 studies that make use of publicly available spectral 

measurements. 

Tables 2 to 5 summarize the most relevant work performed on the application of hyperspectral 

imaging for rice cultivation, highlighting the main objects of study and the extent of the spectral 

ranges evaluated in each work. These Tables present the acquisition method, spectral region, rice 

species use in each work and the region of the study, which can be used as a reference of local 

climate conditions. It is important to highlight that the local soil conditions were only taken into 

consideration for the proposed methodologies in two individual studies [33,49]. With the exceptions 

of [127] (which employed a publicly available dataset from the NEON 2013 Imaging Campaign in 

California [128]), and [32,109,112–114,129] (which employed publicly available Landsat and/or 

MODIS measurements), all the surveyed literature included their individual data collection 

campaigns as part of their contributions. 
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Table 1. Summary of most common sensor types used in spectral analysis studies for 

rice cultivation applications. 

Sensor type Commercial name Studies 

Sensors that 

measure radiance or 

irradiance, as well 

as transmittance and 

reflectance. Usually 

portable devices 

ASD QualitySpec Pro 350–2800 nm [130,131] 

ASD FieldSpec Pro Spectrometer, 350–2500 nm [36,132–136] 

ASD FieldSpec 3 Spectroradiometer, 350–2500 nm [75,96,137] 

ASD Field Spec 2 [11,138] 

ASD FieldSpec-FR (350–2500 nm) [48,139] 

GER-2600 Spectroradiometer, 330–2600 nm [103] 

GER1500 Spectroradiometer, 300–1100 nm [23] 

HR-1024 Spectroradiometer, 350–2500 nm [140] 

Portable ground MSR16 Radiometer Cropscan, 450–

1750 nm 

[76] 

Hyperspec HEADWALL [10,11,141] 

MS-720 Spectroradiometer, 350–1050 nm [142] 

LI-1800 Spectroradiometer, 380–1100 nm [48,49] 

Sensors based on a 

spectrograph + CCD 

system/optic 

ImSpector V10E Spectrograph, 390–1050 nm [35,90,119,136,143,144] 

ImSpector N17E Spectrograph, 874–1734 nm [58,125,145] 

SP2500i Spectrograph [118,119] 

Multispectral 

systems with 

incorporated filters 

Tetra CAM: ADC Micro, ADC Lite system, 

MiniMCA 

[11,74,146–148] 

Sensors with 

onboard DSP 

software for 

parameter 

estimation 

SPAD-502 Chlorophyll Meter, Measure the leaf 

transmittance in two wave bands: 400–500 nm, 600–

700 nm 

[46,126] 

Dualex 4 Fluorescence Sensor [46] 

4.1. Biomass and vegetation estimation 

Table 2 summarizes the most relevant works in hyperspectral imaging applications for 

biomass and vegetation estimation. These studies allow for remote detection of individual rice  

plants [33], common weeds [149] and large-scale landcover identification of the presence of 

rice paddies [112,114,129]. In addition, several studies introduce the capability of estimating 

the total Above Ground Biomass (AGB) of individual plants from their spectral 

measurements [131,132,141,146]. 

Development of automated plant detection methodologies represent a useful tool for estimating 

germination rates during early development stages, as well as determining the presence of weeds 

in rice fields, which can hinder the development of rice plants and reduce yields. To this end, the 

study [33] employs visible and NIR multispectral measurements, acquired using an UAV, to 

discriminate rice plants from background soil spectral measurements. Supplementally, an in-depth 

comparative study of the classification performance of various machine learning algorithms for 

discriminating between rice plants and common weeds is presented in [149]. [84] study the optimal 

height to operate a UAV to extract the Leaf area index LAI, and leaf dry weight (LDW) and 
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evaluating the performance of hyperspectral images as a metric of how good their measurements 

were. 

Currently, leaf color charts are distributed to rice farmers in order to estimate the N levels 

present in the plants. This visual cue is intended as a low-cost diagnostic tool in order to ensure 

adequate fertilization levels and to maximize yields [150]. However, previous work on the spectral 

properties of rice plants suggests that the 700–900 nm spectral region describes significantly 

superior statistical separability between spectral measurements of rice leaves at different 

fertilization levels [119,120,126,130,151]. Due to the fact that this optimal spectral range is outside 

the visible spectrum (380–740 nm) [136], hyperspectral imaging has been adopted as an imaging 

solution that is capable of visually capturing the differences in N levels in the appropriate spectral 

range. Thus, timely monitoring of N status of rice crops with remote sensing can aid the optimization 

of N fertilizer management and reduce environmental stresses for improving plant growth. 

Table 2. Summary of most relevant work on the use of hyperspectral imaging for rice 

cultivation applications for biomass and vegetation estimation in rice crops or landcover 

classification. 

Study Region Rice species Inferred magnitude Acquisition Spectral region 

[146] Colombia Indica IR64, Line 

23 

Above Ground 

Biomass 

Unmanned Aerial 

Vehicle (UAV) 

520–690 nm, 

760–900 nm 

[131] Sanjiang Plain, 

China 

Kongyu Above Ground 

Biomass 

Manual 350–1800 nm 

[141] China 152 Cultivars Above Ground 

Biomass 

Manual 400–1000 nm 

[132] Jiangsu, China Yliangyou 1, 

Wuyunjing 24 

Above Ground 

Biomass 

Manual 350–2500 nm 

[112] South Korea/ 

California 

Not Specified (N/S) Paddy Rice 

Landcover 

Satellite 430–1200 nm 

[114] West Java, 

Indonesia 

N/S Paddy Rice 

Landcover 

Satellite 479–841 nm 

[32] Hunan, China N/S Paddy Rice 

Landcover 

Satellite 430–1200 nm 

[33] Rugao City, 

Juangsu, 

China 

N/S Plant Presence UAV 430–900 nm 

[149] China N/S Plant Species Manual 415, 561, 687, 

705,735, 1007 nm 

[84] Jiangsu, China Wheat (Ningmai 

13, Huaimai 33), 

Rice (Nanjing 9108, 

Lianjing 10) 

Ratio Vegetation 

Index (RVI) 

Manual 730, 815 nm 

[129] Nanchang, China N/S Rice Paddy Presence Satellite 400–1200 nm 

Spectral measurement sensors (either imaging or non-imaging spectrometers) have the sole 

function of acquiring the spectral response of the target of interest [70]. That is, these devices are not 

capable, nor is it their intended function, of directly measuring the physical magnitudes of relevance 
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to rice crop health and productivity assessment efforts. For this reason, several studies have been 

performed towards building signal processing models to estimate rice plant and soil conditions of 

interest from their spectral responses. [23,103,117,127,144,148,153]. 

4.2. Chlorophyll and Nitrogen estimation 

Table 3 summarizes the most relevant studies that use spectral measurements to estimate the 

N [31,118,120] or Chlorophyll [137,144,152,153] contents in rice plants using a variety of 

acquisition methodologies and processing techniques. 

Of these physical magnitudes, Leaf Nitrogen Content (LNC) is the most common in the current 

state of the art, due to its closer relationship to rice crop yields. While the majority of these 

approaches attempt to directly estimate N levels from hyperspectral measurements, there have been 

efforts in further refining the accuracy of these models by incorporating additional sources of 

information, such as remote LIDAR measurements [74,117]. 

The LNC is an indicator of the N nutrients in the plants which an indirect variable extracted 

under different techniques from visible, Near infrared (NIR) or Short Wave Infrared (SWIR) data. It 

is used as indicator of the crops growth status, which it is related with the crop field. An estimation 

of the N content indicators in rice crop leaves using to different leaf clip meters is presented in [31], 

where two clippers provide an estimated value of N nutrient related indicators as: Chlorophyll, 

Flavonoid Content and Nitrogen Nutrient Index (NNI). By linear regression a comparative 

performance is presented for different fertilization rates and three experiments sets using various 

types of rice species. In [120], LNC is estimated from random leaf leave samples were collected 

from a single cultivar where different level of urea fertilizer is applied at seeding, tillering and 

shooting stages. Fluorescence intensity and ratio where performed at lab at 350 nm, 460 nm and 556 nm 

and compare the results and provides an insight of better performance of the regions where fluorescence 

data is used. Similar than [120], in [118] and estimation of the LNC from different samples collected 

at footing, heading and tillering stages. Additional their work propose a combine spectral index 

using hyperspectral LiDAR and fluorescence LiDAR. A study using SWIR to improve the 

accuracy in the estimation of LNC using Continuous Wavelet Analysis (CWA) is developed in  

[133], where they combine CWA and spectral index method using random data from a 4 set of 

experiments using rice and wheat cultivar to extract Narea, and Nmass with the leaf mass area (LMA). A 

difference of [133], in [120] use Back propagation Neural network BPNN combines with principal 

component analysis to show the spectral response of LNC. A single spectral study in [49] computes a 

spectral index and relates it to the N levels in canopy rice. In addition, it is of great interest to 

detect the presence of rice plants in the early season in order to reseed specific areas with 

convenient timing [33].  
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Table 3. Summary of most relevant work on the use of hyperspectral imaging for rice 

cultivation applications for Chlorophyll and Nitrogen Content Estimation. 

Study region Rice species Inferred magnitude Acquisition Spectral region 

[144] China Yongyou 4949 Chlorophyll N/S 539–910 nm 

[137] New Delhi, India 13 Species Chlorophyll Manual 690, 700–750 

nm, 940–1104 

nm 

[153] Japan Haenuki and Koshihikari 

SD 

Chlorophyll UAV 327–763 nm, 

640–1050 nm 

[46] Jiangsu, China Oryza sativa L. Chlorophyll Automated Ground 

System 

360–1025 nm 

[31] Jiangsu, China. Ningjing-4, Wuyunjing-24 LNC Manual 375, 710,  

850 nm 

[120] Hubei, China Yangliangyou 6 LNC Manual 355, 460,  

556 nm 

[118] Jianghan Plain, 

China 

Yongyou 4949, 

Yangliangyou 6 

LNC Manual 360–800 nm 

[133] Jiangsu, China Yliangyou 1, Wuyunjing 24 LNC Manual 350–2500 nm 

[154] N/S N/S LNC Manual 450–900 nm 

[74] Jiangsu, China Wuyunjing24, 

Yliangyou1 

LNC/Plant Nitrogen 

Accumulation 

(PNA) 

UAV 490–900 nm 

[148] Juangsu, China N/S N Content UAV 450–950 nm 

[151] China Yongyou4949, 

Yangliangyou 6 

N Content Manual 538–910 nm 

[117] China N/S N Content Manual 450–740 nm 

[49] Taiwan Tainung 67 N Content Manual 400–1100 nm 

[76] Nanjing, China Wuxiangjing 9, 

Nipponbare, Huajing 2 

N Content Manual 610, 660,  

680 nm 

[119] Hubei, China Yongyou4949, 

Yangliangyou 6 

N Content Manual 360–800 nm 

[110] Heilongjiang, 

China 

Longjing 31, 

Longjing 21 

N Content Manual 670, 730,  

780 nm 

[135] Jiangsu, China Y Liangyou 1, 

Wuyunjing24 

N Content UAV 490, 550, 680, 

720, 800 nm 

[48] China, Japan Tsugaru Roman N Content Manual 350–2500 nm 

[130] Suizhou City, 

China 

Japonica, non-glutinous 

Rice 

N Content Lab 538–910 nm 

[140] Southern NSW, 

Australia 

Reiziq, Sherpa N Uptake Manual 350–2500 nm 

[23] Suwon, Korea Hwasungbyeo, 

Dasanbyeo, 

Juanbyeo, SNU-SG1 

N, Chlorophyll Manual 520–600 nm 

Continued on next page 
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Study region Rice species Inferred magnitude Acquisition Spectral region 

[130] China Japonica and non-glutinous 

rice 

N, Chlorophyll Manual 538–910 nm 

[75] New Delhi, India PRH-10 N, 

Phosphorus, Sulphur 

concentration 

Manual 350–2500 nm 

[111] Rosasco, 

Gaggiano 

43 Cultivars PNA Manual 450–700 nm 

 

Table 4. Summary of the most relevant work on the use of hyperspectral imaging for rice 

cultivation applications for detection of Pests, Diseases, Heavy Metals and various 

Pollutants. 

Study Region Rice species Inferred magnitude Acquisition Spectral region 

[126] Harbin, China N/S Disease Presence Manual 560, 620,  

670 nm 

[103] N/S Nipponbare Disease Presence Manual 900–1700 nm 

[139] Wufeng, Taiwan TNG 67, TCS 10 Disease Presence Manual 350–2500 nm 

[155] Anhui, Jiangxi and 

Hunan Province, 

China 

N/S Disease Presence Manual N/S 

[34] Arkansas, USA TIL 654.13 Disease Presence Manual 480, 760, 800, 

1000 nm 

[36] Jiangsu, China Sanyou 63 Leaf Pest Damage Manual 400–1000 nm 

[35] Hangzhou, China Y Liangyou689 Pest Presence Manual 380–1030 nm 

[115] N/S N/S Heavy Metal 

Concentration 

Manual 350–2500 nm 

[76] Suzhou, China Oryza sativa Heavy Metal 

Concentration 

Manual 420–980 nm 

[90] China Xiushi 134, Zhejing 

88 

Herbicide Toxicity Manual 380–1030 nm 

4.3. Pest, diseases, heavy metal and pollutants 

Regarding the different stages of plant growth, the state of the art on hyperspectral image 

analysis of rice plants at the seedling stage is focused on the detection of the presence of pests [35] 

and diseases [103,139] that can severely impact yields by preventing plants from developing into 

their productive stages. Conversely, studies on plants past the seedling stage are centered on the 

maximization of crop yield through the determination of various chemical properties indicative of 

plant health [127,152,153]. Due to the need to supply the growing world population with this basic 

crop, it is important to know the development cycles of this plant, as well as the factors, both 

climatic and environmental, that limit its development and yield, and the impact on human health. It 

is also necessary to consider all the methodologies and technologies available for crop analysis 

including hyperspectral images, canopy reflectance spectra, examine the mechanisms of pollutants 

uptake and translocation in rice [13], Phenology, remote sensing and near-surface imaging 
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spectroscopy, among others. The presence of various contaminants and/or diseases can negatively 

impact the nutritional content of crops [35,108,103,139,156]. All the studies are summarized in 

Table 4 where diseases, pest, heavy metal contaminants and Pollutants are presented. 

4.4. Seed studies, rice lodging and other variables 

Furthermore, hyperspectral imaging applications have been developed for specific aspects of the 

rice cultivation industry beyond plant health and growing status, such as identification of specific 

plant genotypes [137,145,149,157], and seed type and vitality identification [91,125]. These studies 

address important concerns beyond the growing process and aid in the assessment of various aspects 

of grain quality, viability and/or geographical origins. These studies are summarized in Table 5. 

Table 5. Summary of most relevant work on the use of hyperspectral imaging for rice 

cultivation applications for seed studies, rice lodging and other variables. 

Study Region Rice species Inferred magnitude Acquisition Spectral region 

[50] 
Zhenjiang, 

China 
N/S Seed Origin Manual 499–950 nm 

[143] Vietnam 90 Cultivars 
Seed quality: Shape, 

length, width and colour 
Manual 385–1000 nm 

[145] China 
Zhongzheyou No.1, 

5, 8 and 86 
Seed Type Manual 1069–1558 nm 

[125] China N/S Seed Vitality Manual 

992, 1012, 1119, 

1167, 1305, 

1402, 1629,  

1649 nm 

[142] Laos Oryza Sativa Grain Yield Manual 
710–740 nm,  

830 nm 

[134] 
Zhejiang, 

China 
Xiushui 110 Panicle Health Manual 350–2500 nm 

[158] Kyoto, Japan Kinu-Hikari Protein Content Manual 400–1000 nm 

[47] 

South Korea 

and 

China 

N/S 
Rice Geographical 

Origin 
Manual 400–1000 nm 

[147] 
Heilongjiang, 

China 
Longjing 32 

Rice Lodging 

Classification 
UAV 400–700 nm 

[138] 
Taibao City, 

Taiwan 
TaiKeng 2 

Rice Lodging 

Classification 
UAV VIS 

[109] South Korea N/S Yield Satellite 400–890 nm 

5. Signal processing methods 

The mathematical relationship between the spectral measurements of rice plants extracted from 

hyperspectral images, and the actual physical magnitudes of interest in the plants to be estimated is 

highly nonlinear, and a nontrivial task to accurately determine [45]. When attempting to establish a 

mathematical model that describes the relationship between two such magnitudes, it is important to 
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carefully evaluate the available established methodologies for achieving this task. The most relevant 

considerations in the surveyed literature regarding the specific methodologies used are summarized 

in Tables 6 and 7. 

In this regard, a significant subset of the surveyed literature employs regression-based 

approaches to optimize for maximum correlation between specific spectral regions and the physical 

magnitudes of interest [23,139,148], where the proportion of the dependent variable’s variance 

that can be explained from the selected independent variables [159] is taken as a performance 

measure (R
2 

value). In these approaches, the spectral measurements (or a subset thereof) are 

approximated to be independent variables, or predictors, in a linear fashion for the specific dependent 

variables, or measured responses (such as N content, carbon content, etc.), being studied. 

Additionally, several studies employ correlation analysis between the behavior of a reduced subset of 

spectral bands and the target magnitudes of interest [49,127,157]. These approaches explore the 

correlation coefficient r, {r ∈ R|0 ≤ r ≤ 1} between individual spectral intensities x ∈ R, and the 

measured responses of interest y ∈ R: 

  
        

   
    

 
           (1) 

where cov(x,y) is the covariance of the spectral measurement x and the magnitude of interest y, and 

s
2

x, s
2

y are the variances of x and y, respectively. Several regression-based approaches perform a 

comparative statistical study to find a subset of spectral bands with high correlation to the variables 

of interest [31,132,152]. It is important to note that while this practice introduces an advantageous 

computational complexity reduction, it discards a significant number of spectral measurements that 

could be taken into consideration with the use of Principal Component Analysis (PCA) or similar 

dimensionality reduction techniques [119,134]. For classification-oriented applications, the 

surveyed literature presents a variety of methodologies including Support Vector Machines 

(SVM) [50,125,126,149,159], Neural Networks [35] and Random Forest-based approaches [145]. 

Support Vector Machine (also, later generalized under the name Kernel Machine) classification 

of HSIs is a binary approach that relies on finding an optimal separating hyperplane by maximizing 

the perpendicular distance (given by support vectors) from the hyperplane to the closest data points 

from the two classes on both sides of it. In the case that a linear hyperplane is not able to 

satisfactorily discriminate between the two features with a significant margin using the 

dimensionality of the features, it is possible to map the features to be classified to a higher-

dimensional space, in order to maximize class separability using a nonlinear kernel function (hence 

the alternate description of kernel machine) [160,161]. Compared to modern approaches (particularly, 

deep neural networks), SVM classification approaches consistently produce accurate results in 

applications with the limitation of reduced availability of training data [162]. 

Neural Network classification of HSIs is a non-parametric approach that employs the 

backpropagation algorithm [163] to train a neural network for pixel classification in a “black box” 

approach. In this case, a neural network is setup to have as many input nodes as spectral bands in a 

HSI pixel, one or more hidden layers with a variable number of nodes, and an output node consisting 

of the class assignment or inferred magnitude estimation for the input information. Alternatively, 

Convolutional Neural Networks (CNN) are Neural Network architectures optimized for operating on 

spatially distributed data, as is the case with HSIs [147,155], as opposed to Fully-Connected 

approaches that operate on a pixelwise manner [118,120,164]. While these approaches have recently 
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introduced significant improvements on classification problems, they require vast amounts of 

training data to produce accurate models, which include nontrivial processing hardware 

requirements for the network training operation. These methodologies present the advantage of 

producing accurate statistical models for rice cultivation in reasonable processing times without 

the need of high-performance specialized hardware. However, the accuracy of the calculated 

models shows a consistent disadvantage when compared to alternate, more computationally 

complex, methodologies such as those based on PCA [103,119,126,134,165], Support Vector 

Machines [50,112,117,125,126,130,144,151] and Artificial Neural Networks [117,119,130]. At the 

cost of increased accuracy, it is important to know that these methods describe a higher 

computational complexity, and it is important to take their required dedicated resource allocation and 

computing time when designing a deployable hyperspectral image analysis-based application. 

5.1. Classification-based hyperspectral imaging applications 

In classification problems, where the employed methodologies produce discrete  class 

outputs for detection purposes, results are stated using the Accuracy metric, calculated by 

dividing the number of accurately classified pixels from each respective study’s testing set 

by the total number of pixels for each class [166]. As can be observed in several studies in 

Table 6 [10,103,126,134,137,143,165], these discrete classification applications tend to produce 

results with high accuracy. This can be explained by the high statistical separability of the target 

spectra in these studies, which most commonly related to the presence various types of plant pests 

and/or diseases, when compared to the spectra of healthy plant tissue and background contents in 

specific wavelength ranges. 

5.2. Regression-based Hyperspectral Imaging Applications 

Contrary to classification-based approaches, applications concerned with estimating a 

nondiscrete magnitude, such as LNC, from spectral measurements tend to describe lower 

performance values [49,130,140,148,154]. This discrepancy can be explained by the considerably 

larger continuous solution space of magnitude inference problems, compared to the discrete solution 

space in classification problems [167]. 

In order to improve the specific performance of the surveyed methodologies, several 

approaches incorporate an additional preprocessing step in order to maximize the statistical 

separability of key variables of interest in the acquired hyperspectral data. Depending on the 

required complexity of each methodology, this preprocessing step can range from a 

computationally inexpensive subset selection and/or scaling on the values of key spectral 

bands [130,133,144,148], to a more computationally complex operation, such as Linear 

Discriminant Analysis PCA [103,119,126,134,165] that takes into account the behavior of the 

relevant spectral signatures across the available spectrum. 
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Table 6. Summary of signal processing methods for classification tasks using 

hyperspectral measurements. 

Study Processing method Input variable Output variable Performance metric Performance 

[137] ANOVA/CART Spectral Reflectance Cultivar Species Accuracy 0.98 

[126] PCA-SVM Spectral Reflectance Rice Blast Presence Accuracy 0.975 

[103] PCA/Linear 

Discriminant 

Method 

Spectral Reflectance Rice Blast Presence Accuracy 0.92 

[155] Convolutional 

Neural 

Network 

RGB Image Pest Presence Accuracy. 70.0%–87.2% 

[34] Sequential Forward 

Selection (SFS) 

Spectral Reflectance Disease Presence Accuracy 0.965 

[165] PCA + SVM Spectral Reflectance Quinclorac Presence Accuracy 0.9 

[112] Random 

Forest/SVM 

Spatiotemporal 

Satellite Data 

Paddy Rice Map Accuracy 98.67%/93.87% 

[114] EVI Thresholding Satellite Images Hazardous Flooding 

Classification 

Overall Accuracy 0.7596 

[32] CNN Satellite Images Paddy Rice Map R2 0.9945 

[35] SPA/Neural 

Network 

Method 

Spectral Reflectance Infestation Degree Accuracy 0.95 

[149] SPA + Weighted 

SVM 

Spectral Reflectance Crop Class Accuracy 0.97 

[10] Partial least square 

discriminant 

analysis (PLS-DA) 

Spectral Reflectance Rice Origin 

Classification 

Accuracy 0.99 

[147] Convolutional 

Neural 

Network 

RGB + 

Multispectral 

Image 

Rice Lodging 

Classification 

Dice coefficient 0.9284 

[33] Decision Tree RGB, NIR, MS 

images 

Rice Plant Presence Overall Accuracy, 

Kappa Coefficient 

92.56%/0.86 

[138] Maximum 

Likelihood/Decision 

Tree Classification 

Hybrid spatio-

spectral image 

Rice Lodging 

Classification 

Accuracy 0.9384 

[129] N/S Spectral Reflectance Rice Paddy Presence Kappa Coefficient 0.89 

[50] SVM Spectral Reflectance Seed Origin Accuracy 0.9167 

[143] LDA + Random 

Forest 

Spectral Reflectance Seed Variety Precision 0.9859 

[145] Random Forest Spectral Reflectance Cultivar Species Accuracy 1 

[125] PLSDA, LSSVM, 

ELM 

Spectral Reflectance Seed Viability Accuracy 0.9367 

[113] Linear Regression Spatiotemporal 

Satellite Data 

Cultivated Area R2 0.94 
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6. Current challenges 

We have observed a series of common challenges across the reviewed literature that represent 

limitations regarding the viability of deployment of hyperspectral imaging applications in the field. 

These challenges are summarized in Figure 6. 

Due to the difficulty and cost of obtaining hyperspectral images of sites of interest, some of the 

surveyed studies perform field measurements at the locations of previously performed aerial 

hyperspectral imaging expeditions. This temporal mismatch between hyperspectral and field-

collected measurements introduces a significant error into the final mathematical models due to a 

myriad of possible condition changes (illumination, change in vegetation composition, erosion, 

anthropogenic canopy changes, water content, etc.) between the acquisition of the input and target 

model data. 

Because the acquisition and processing of these images into useful results for precision 

agriculture is an economically, computationally, and time intensive process, research efforts have 

been focused on finding static relationships between the acquired spectral measurements and the 

physical magnitudes of interest for a specific geography. Collectively, these approaches do not 

incorporate the modeling of the productivity influence of additional factors that are at risk of 

undergoing significant variations in behavior due to imminent climate change, such as shifts in 

temperature trends, soil and/or water acidity, wind and water current patterns, seasonal duration 

changes, among others. In addition, the surveyed literature is concerned with the study of the 

behavior of specific rice cultivars under the variation of specific relevant factors, such as fertilization 

levels. Thus, an important direction for future research is to begin working towards a unified 

characterization model for various cultivars and their requirements. As it is, the performance levels 

obtained in the surveyed literature do not necessarily imply that growing different cultivars under the 

same conditions would provide similar results. An accurate future productivity model that is able to 

adequately incorporate these factors would enable a significant increase in estimated yield 

predictions for any region around the globe. 

Table 7. Summary of signal processing methods for estimating physical magnitudes of 

interest from hyperspectral measurements. 

Study Processing method Input variable Output variable Performance metric Performance 

[146] Multivariate regression Multispectral NIR 

Images 

Above Ground 

Biomass 

Correlation 0.76 

[131] Correlation Analysis Spectral 

Reflectance 

Above Ground 

Biomass 

R2 0.77 

[141] Thresholding/Linear 

Regression Approach 

Spectral 

Reflectance 

Above Ground 

Biomass 

R2 0.94 

[132] Linear and Nonlinear 

Regression 

Spectral 

Reflectance 

Above Ground 

Biomass 

R2 0.82 

[144] SVM Spectral 

Reflectance 

Chlorophyll 

density 

R2 0.55 

[153] TUI Spectral 

Reflectance 

Chlorophyll 

density 

Correlation 0.803 

Continued on next page 
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Study Processing method Input variable Output variable Performance metric Performance 

[152] Linear Regression Spectral 

Reflectance 

Chlorophyll 

density 

R2 0.84 (Sunlit Leaves), 

0.9 (Shadowed 

Leaves) 

[139] Multiple Linear 

Regression 

Spectral 

Reflectance 

Infestation 

Degree 

R2 0.889 

[142] PLS Regression Spectral 

Measurements 

Estimated Yield R2 0.873 

[115] PLS Regression Spectral 

Reflectance 

Cd-Pb Stress 

Level 

R2 0.90 for Cd and 0.92 

for Pb 

[76] PLS Regression Spectral 

Reflectance 

Cd-Pb 

Concentration 

R2 0.592, 0.013 

[36] Linear Regression Spectral 

Reflectance 

RLF Damage 

Severity 

R2 0.987 

[31] Linear Regression Spectral 

Reflectance 

LNC R2 0.84 

[120] Fully-Connected NN Fluorescence 

Spectra 

LNC R2 0.867 

[118] Fully-Connected NN Reflectance + 

Fluorescence 

Measurements 

LNC R2 0.81 

[133] Continuous Wavelet 

Analysis 

Spectral 

Reflectance 

LNC R2 0.77 

[154] Multivariate regression Spectral 

Reflectance 

LNC R2 0.72 

[74] Regression RGB/MS/CIR Data LNC / PNA R2 LNC 0.81. PNA 0.84 

[148] Linear Regression Spectral 

Reflectance 

LNC R2 0.56 

[151] SVM Spectral 

Reflectance 

LNC R2 0.73 

[117] SVM, BP-NN, 

RBF-NN 

Spectral 

Reflectance and 

Fluorescence 

LNC R2 0.979 

[49] Correlation Spectral 

Reflectance 

LNC R2 0.679 

[24] Color Visibility 

Analysis 

RGB Image N Fertilizer 

Level Needed 

R2 0.998 

[152] Linear and Nonlinear 

Correlation 

Spectral 

Reflectance 

LNC R2 0.78 

[119] PCA/Neural Network 

Method 

Spectral 

Reflectance and 

Fluorescence 

LNC R2 0.912 

Continued on next page 
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Study Processing method Input variable Output variable Performance metric Performance 

[110] Linear Regression Spectral 

Reflectance 

LNC R2 Elongation stage: 

0.68; Heading stage: 

0.85 

[135] Stepwise Multiple 

Linear Regression 

(SMLR) 

Spectral 

Reflectance 

LNC, PNA R2 LNC: 0.20, PNA: 

0.73 

[48] PLS 

Regression 

Spectral 

Reflectance 

Canopy N 

Content 

R2 0.917 

[130] SVM Hyperspectral 

LIDAR 

Measurements 

LNC R2 0.75 

[140] PLS Regression Spectral 

Reflectance 

LNC R2 0.84 

[23] Linear Regression Spectral 

Reflectance 

LNC R2 0.84 

[130] SVM, MLP-NN, RBF-

NN 

Spectral 

Reflectance 

LNC R2 0.75 

[75] Correlation Analysis Spectral 

Reflectance 

N, Phosphorus, 

Sulphur 

R2 N 0.80, P 0.69, S 

0.73 

[134] PCA + SVM Spectral 

Reflectance 

Panicle Health Accuracy 0.9914 

[111] Linear regression, K-

means Clustering 

RGB Image PNA R2 0.95 

[158] PLS Regression Spectral 

Reflectance 

Protein content R2 0.76 

[84] Linear Regression Spectral 

Reflectance 

RVI R2 0.81 

[109] GRAMI Landcover/Spectral 

Reflectance 

Rice Yield Overall Accuracy 89.5%–90.2% 

Further, a study for hyperspectral images mountain forest canopy suggests that there is a 

nontrivial discrepancy in the measured spectral responses of remotely sensed canopies due to 

topographical irregularities [168]. While this is an issue that is less prevalent in most current rice 

fields due to their conventionally flat topographies, it is within the realm of possibility that planting 

areas will expand to less favorable topographies in the future due to the increasing need for 

additional farmland to support the growing population and compensate for the nutrient depletion of 

existing farmland.  

Rice cultivation and, by extension, any hyperspectral imaging-based applications for its 

improvement, is a highly multivariate dynamic problem where a variety of intertwined factors such 

as soil composition, location, local macro/microclimates, fertilization levels, fertilizer usage, farming 

practices and a myriad of additional factors can impact the viability of a given method outside of the 

conditions present in individual research efforts. Given the imminent threat of global climate change 

which, beyond the effects of changes in climate, can have additional effects on rice cultivation 

practices, among which can be migration to new agricultural regions with more favorable climates 
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but different soil chemical properties and the emergence of novel rice cultivars better suited to these 

conditions. In addition, even small supply chain disruptions can have a significant impact on the 

composition and efficacy of the various production inputs used in precision agriculture. 

The surveyed literature consists mostly of studies performed over 1–5 growing seasons in a 

given region with known conditions. Currently, shifting climate dynamics around the world 

potentially threaten the long-term usability of the studies performed for any given region. Thus, 

hyperspectral imaging applications for rice cultivation will be required to take into account several 

dynamic factors and, most importantly, adequately model their influences on time-resolved recorded 

spectral measurements over multiple decades, whenever possible. It is our consideration that 

addressing these considerations will play a critical role in consolidating the long-term deployability 

and effectiveness of a given contribution in the face of imminent climate change. 

 

Figure 6. Challenges that limit the viability of deployment of hyperspectral imaging 

applications in rice cultivation. 

Moreover, the lack of a standardized, publicly-available dataset for the development of signal 

processing methodologies for various aspects of the rice cultivation using hyperspectral images 

requires individual research groups to plan and execute their data collection expeditions over 

significant stretches of time, spanning up to various cultivation cycles [23]. Beyond this, it hinders 

the capability of research groups in different geographies to accurately compare their results to the 

available literature by isolating the differences in spectral responses between local cultivars and soil 

compositions. In the surveyed literature presented in Tables 2 to 5, it is apparent that a significant 

majority of studies relies on manual acquisition of data using specialized spectral measurement 

equipment, such as spectrometers and/or hyperspectral cameras. These approaches require, in 

addition to the nontrivial matter of the equipment acquisition, skilled personnel capable of operating 

the equipment in a manner conductive to estimating the relevant magnitudes for a given application. 
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These concerns present an important limitation on the widespread deployment of laboratory-derived 

innovation to applications in the field. In contrast, a significant minority of the surveyed literature 

describes systems capable of automated acquisition using UAVs [33,74,135,138,146–148,153]. In 

order to provide better accessibility of the technological advances being developed, it is our 

consideration that it is necessary for either public or private actors to further advance the 

consolidation and deployability of these analytical studies in order to facilitate their availability as a 

service, either directly to crop farmers in order to maximize the efficiency of their efforts, or towards 

funding agencies in order to streamline the process of evaluating the development of their 

investments, and better calibrate their investment return expectations to increase availability of 

funding sources for crop producers. One major limitation consistent across the majority of surveyed 

literature is the use of manual measurements to compute the published models. In order to minimize 

potential ongoing costs for widespread hyperspectral technology deployments to rice growers, it is 

important to continue producing models based on UAV-acquired hyperspectral data. These 

approaches enable the acquisition of a significantly higher volume of data, in an easily scalable 

manner according to plantation size with reduced labor requirements. On the topic of widespread 

deployability to growers, it is our consideration that additional research effort is required on the 

development of solutions that provide succinct, actionable insights to end users to maximize the 

effects of their labor. An example of such applications is the work published in [24], which uses the 

inferred LNC to provide end users with an indication of the required fertilizer levels to be applied. 

Beyond the possibility of providing instructions to a human operator, further work on these 

applications can play a pivotal role in the context of a precision agriculture system that distributes 

fertilizers through automated actuators with little to no human intervention, further reducing the 

potential impact on food production due to population migration and worker shortages. 

It is important to highlight that most previous studies include the cultivation of rice plants under 

predefined conditions in a controlled environment in order to isolate the relevant parameters for each 

study. Thus, in order to successfully perform a large-scale deployment of the findings of the 

surveyed literature, it is required to dedicate future research efforts in the modeling of the influence 

of various local conditions on the health and productivity of rice crops outside of the specific regions 

of study. Success in these efforts would enable efficient deployments based on these findings in a 

wider variety of regions with different soil compositions and climatological conditions. In addition, 

in the current atmospheric conditions, it is becoming increasingly necessary to model the influence 

of atmospheric pollution both on the health of rice plants in existing plantations, and on the viability 

of soil for the informed allocation of land for new plantations in order to satisfy growing production 

needs. 

7. Conclusions 

The current review synthesizes and highlights the most relevant works regarding the use of 

hyperspectral imaging sensing technology and hyperspectral image processing algorithms for the 

estimation and monitoring of various aspects of the rice cultivation process. The significant 

contributions in literature are summarized according to their objectives and summarized in tables 

according to the specific constraining factors considered such as biomass and vegetation estimation, 

landcover classification of rice growing sites; Chlorophyll and N content estimation; Studies of 

diseases, pests, heavy metals and other pollutants’ effects on rice crops; Studies focused in various 
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seed properties, lodging and others variables. Relevant information about the studies performed are 

presented, such as the acquisition methodology, considered spectral region, rice cultivars used in 

each work and the region of the study, which can be used as a reference of local climate conditions. 

The hyperspectral signal processing methods used in rice production are summarized in terms 

of whether the objective of the individual studies is to infer a specific magnitude, or to classify the 

spectral measurements into discrete classes. Further, the specific approach used in each study, where 

the most relevant methodologies are discussed, such as statistical, linear or multiple spectral 

transformations and combined advanced methodologies. Additionally, the current review identifies 

the common challenges present across the proposed hyperspectral systems for rice cultivation that, in 

our consideration, are highly relevant to the goal of developing widely deployable applications of 

this technology, with the objective of supporting the efficient agro-industrial production of rice crops. 

The widespread deployment of the surveyed technological advancements is crucial for achieving 

global sustainability requirements, which is an important challenge in the current age. Further, these 

developments enable the advancement of various important global challenges related to uplifting 

communities from poverty, and to provide them with equal opportunities in a manner that is 

environmentally sustainable. 

Regional or country-scale remote sensing deployments of rice field mapping and yield-

estimating technologies can be a valuable planning tool for policymakers and help to reach 

established Sustainable Development Goals. Successful integration of these methodologies into the 

decision-making process can significantly reduce potential food waste and economic losses through 

more accurate import/export rates. For these reasons, it is of great importance for upcoming research 

to focus on the development of low-cost, user-friendly spectral imaging devices that can be more 

feasibly deployed in growing operations of varying scales. 

Finally, in order to more effectively extract as much information from the necessary higher 

volume of time-resolved hyperspectral remote sensing images, and adequately model the influence 

and trends of shifting climate conditions and its effects on rice cultivation in a precision agriculture 

setting, it is imperative to take advantage of any developments in multidimensional signal processing 

methodologies for feature extraction applications. 
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