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Abstract: In this article, we evaluate the impact of temperature and precipitation at the end of the 21st
century (2075–2099) on the yield of maize in the Azuero Region in Panama. Using projected data from
an atmospheric climate model, MRI-ACGM 3.2S, the study variables are related to maize yield (t ha−1)
under four different sea surface Temperature (SST) Ensembles (C0, C1, C2, and C3) and in three different
planting dates (21 August, 23 September, and 23 October). In terms climate, results confirm the increase
in temperatures and precipitation intensity that has been projected for the region at the end of the century.
Moreover, differences are found in the average precipitation patterns of each SST-ensemble, which leads
to difference in maize yield. SST-Ensembles C0, C1, and C3 predict a doubling of the yield observed from
baseline period (1990–2003), while in C1, the yield is reduced around 5%. Yield doubling is attributed to
the increase in rainfall, while yield decrease is related to the selection of a later planting date, which is
indistinct to the SST-ensembles used for the calculation. Moreover, lower yields are related to years in
which El Niño Southerm Oscilation (ENSO) are projected to occur at the end of century. The results are
important as they provide a mitigation strategy for maize producers under rainfed model on the Azuero
region, which is responsible for over 95% of the production of the country.

Keywords: Azuero; bias correction; climate prediction; crop yield; GCM; maize; MRI-AGCM; Panama;
precipitation; statistical model; temperature

1. Introduction

The biophysical effect of changing climate patterns on agriculture and crop management has been
largely studied [1,2]. Moreover, the impact of this change is known to be higher in developing countries
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and small farmers relegated to subsistence rainfed agriculture (no irrigation) [3]. Therefore, it is imperative
for countries to study the changes in their yield values in actual climates, and simulate their yields in
future climates [4]. In fact, this process often is done via biophysical models, agro-ecological models,
statistical analysis models, and global gridded crop models. These models are done to provide worldwide
estimates, usually for selected crops (high food energy cereals) such as maize, wheat, rice, and soybean [4,5],
and often are studied in relation to food security [6]. However, there are also studies carried out on crops
of specific economical interest in a country, or those used as foodstuffs, such as sugarcane or others [7].
A comprehensive review of the effects of climate change in agricultural crops is provided in [8].

Some studies have been geared toward the projection of maize in countries or regions, for instance,
in the case of the Latin American region, a seminal 2003 article by Jones and Thornton [9] is often used as
an example. In this article, the authors focuses on the impact that climate change will have on maize for
Africa and Latin America, country by country up to 2055, using the Crop Estimation through Resource
and Environment Synthesis crop model (CERES)-Maize models. The authors project an overall 10%
decrease in maize yield in 2055, but suggest that this be counteracted with technological interventions and
selective plant breeding. For the case of maize yield in Panama, Jones and Thornton [9] calculate a loss of
238 kg ha−1 which represents a loss of more than 14,000 tonnes in 2055. In the work by Ruane et al. [10],
a clearer picture is presented about Panama and the production of maize. The authors focus on Los
Santos and investigate the impact on maize yield in three distinct time periods: near-term (2005–2034),
mid-century (2040–2069), and end-of-century (2070–2099) using an ensemble of 16 GCM models and
the CERES-Maize model in two different scenarios, one with high emissions A2 (comparable forcing as
RCP8.5) and low emission B1 (comparable to RCP 4.5). The resulting yields are as follows (for A2 and
B1, respectively), decrease of 0.5% and 0.1% for near-term, increase of 2.4% and decrease of 0.8% for
mid-century, and increase of 4.5% and 1.5% for end-of-century.

Besides these process-based models, other developments are based on statistical crop yield models,
often called empirical models. In terms of their output, both models are comparable having strong
overlap in their results [11–13]. The first type of model often include the effects of CO2 which can be
related to warming, while in statistical models this is not accounted for [11]. Kogo et al. [14] states that
while simulation and process-based models need to be validated, a regression model is adjusted from real
agronomic yields, thus reflecting the true phenomenon. In Holzkämper et al. [15], the effects of temperature
and precipitation has been assessed with a statistical crop model for maize. In Holzkämper et al. [16],
the analysis is extended to include both process-based and statistical crop models for the determination
of climate impact on maize. Specifically in regards to statistical methods, Shi et al. highlights the issues
existing in the crop yield sensitivity to climate change using statistical models, which include defining the
extent of spatial and temporal scales, trend removal, and removing co-linearity in models. Some of this
issues are also discussed in [17].

The case of the future climate in The Republic of Panama has been addressed by many researchers
and with different models. However, a considerable number of studies have focused in precipitation
at the End-of-Century data using the MRI-AGCM model [18–21]. Most of these studies indicate that in
the future, precipitation will increase in the central and eastern parts of Panama from May to November,
corresponding to the rainy season. The increase in precipitation in most regions can be attributed to the
increased transport of water vapor originating in the Caribbean Sea, which converges on Panama.

Compared to the amount of work dedicated to predictive climate studies for Panama, less work has
been done regarding the implications of these future climate changes. Early work by Espinosa et al. [22]
assessed the impact of climate change impacts on the water resources of Panama for three regions in
La Villa (Los Santos Province), Chiriquí, and Chagres river basins. In [23], the climate change is assessed for
agricultural development for the highlands of Western Panama in Chiriquí Province. More interestingly,
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Garcia et al. [24] focused on climate anomalies found on the projections for La Villa River Basin for the
years 2050 and 2070 using data from the WorldClim Meteorological Database.

In fact, aside from Ruane’s efforts using a process-based model for maize in the Azuero Region,
little research has been carried out to evaluate climatic scenarios and relate their implications on crop
yields. In response to this reality, the objectives of this work are as follows. (1) Explore the meteorological
predictions data set provided by the MRI-ACGM model. (2) Study the projected precipitation and
temperature for the RCP8.5 scenarios for four different Sea Surface Temperature ensembles. (3) Explore
the impact of precipitation and temperature in the Azuero Region using a statistical crop model and study
its implications for maize production in different planting dates. (4) Provide bias-corrected estimates for
key meteorological variables for further use.

2. Materials and Methods

2.1. Location of the Study

Maize cultivation in Panama is concentrated in the eastern portion of the Azuero Peninsula that
extends into the Pacific from the south of the country [25]. The Azuero Region has limits to the north
with the provinces of Coclé and Veraguas, to the south with the Pacific Ocean, to the east with the Gulf of
Montijo, and to the east with the Gulf of Panama. In the same area, the provinces of Herrera, Los Santos,
and the southeastern part of the province of Veraguas are located (as shown in Figure 1).
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Figure 1. Location of the Azuero Region of Panama. Source: The authors.

The tropical climate of the country is affected by the seasonal migration of the inter-tropical
convergence zone (ITCZ) where two maize growing seasons are established: “first plantation” and
“second plantation”. In addition, the particular case of the Azuero Region with respect to its location near
sea level (for instance the town of Los Santos is at an altitude of 16 m) and a coastal climate consistent with
the scales of the GCMs, which allows working with future CO2 emissions scenarios [10].
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2.2. Meteorological Data Source

The Empresa de Transmisión Eléctrica or ETESA is the entity in charge of the hydro-meteorological
functions in Panama and has a National hydro-meteorological Network of more than 215 stations [26].
The data used for this study are observations from 1st January 1965 to 31st December 2017 from the
meteorological station No. 128-001, located in the town of Los Santos, Los Santos province, one of the
more longstanding stations in the region The global coordinates of the measurement area are longitude
7◦56′27′′ and latitude 80◦25′03′′. It is a type A Conventional climate station (mechanical), attended daily
by meteorological observers trained to make readings of the different instruments that measure rainfall,
temperature and relative humidity of the air, and evaporation. According to historical data, the annual
average rainfall is 1066.4 mm and the average annual temperature is 27.8 ◦C.

At the country-wide level there are three regions in terms of rainfall regime: Pacific Region, Central
Region, and Atlantic Region. We highlight the Pacific Region where the Azuero Region is located and is
characterized by abundant rains of moderate to heavy intensity, accompanied by electrical activity that
occurs especially in the afternoon. The rainy season starts firmly in the month of May and lasts until
November, with the months of September and October having the highest rainfall. However, a dry period
known as Veranillo frequently occurs, associated with the absence of precipitation, between late June, July
and August [10,27].

2.3. Projected Metereological Data

Among the many models that make part of the 5th phase of CMIP (CMIP5), the MRI-AGCM model
is of interest for this work [28] because of high horizontal resolutions and high performance in present
climate simulations. This model was jointly developed by the Japan Meteorological Agency (JMA) and
the Meteorological Research Institute of Japan (MRI). The last generation of this model is MRI-ACGM
3.2 [29]. The 20 km horizontal resolution used in this study is one of the finest horizontal grid spacing
in the latest 6th phase of CMIP (CMIP6) as well as in CMIP5. This model is AGCM without the ocean
component in order to represent present climate without almost no biases in sea surface temperature (SSTs)
by prescribing observed SSTs and to properly simulate extreme events such as tropical cyclones which are
composed of small-scale convection activities. This model, however, inherently has no atmosphere–ocean
interactions, which may slightly affect the future climate projections, but has one of the best representations
of present climates in CMIP5 models. This model has been used for the projections of rain [21,30] and
surface air temperature in South America [21,30] or other hydroclimatic variables in Panama [20], Central
America, and the Caribbean [31].

The projected data contained projections for the Central American region (including Panama) at
60 km and 20 km of grid cell resolution. The model had projected values for two variables—precipitation
and temperature—under the RCP8.5 (Representative Concentration Pathway) trajectory. This trajectory
describes how emissions continue to rise throughout the 21st century, with radiative forcing values of
+8.5 W/m2 of CO2 in the year 2100. This increase is measured in relation to the registered pre-industrial
values. This is one of the trajectories and scenarios described by the Intergovernmental Panel on Climate
Change (IPCC AR5) [32].

Present time data (SPA 8.5) were obtained from the Sea Surface Temperature (SST) multimodel set
mean pattern calculated from future projections of the 18 CMIP3 models for the 1979–2003 period. Future
time data (SFA 8.5) is composed of four different projections of future SSTs for the 2075–2099 period. Each
projection encompasses a particular spatial SST anomaly pattern. The four projections can be described as
follows: the C0 SST-ensemble projection, which is a multimodel ensemble mean SST computed from future
projections by the 18 CMIP3 models, and the C1 SST-ensemble, which results as the first cluster identified
in a clustering analysis of the 18 CMIP3 models. The C1 projection is known to have less spatial variation
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in warming over the tropics in relation to the other clusters and also that it shows that the warming in the
southern hemisphere is greater than in the northern hemisphere. The C2 projection is similar to the CMIP3
ensemble average, characterized by a greater warming in the Indian Ocean. Finally, C3 has the largest
spatial variation among all SST, and is distinguished by visible warming near Japan (western Pacific and
subtropical central Pacific). For a detailed presentation of the methods for the creation of the projections
the reader is advised to check Murakami et al. [33,34].

Among the GCMs participating in CMIP5, the MRI-AGCM is the one with the highest horizontal
resolutions. I has a resolution of 20 km. The other CMIP5 models have typically horizontal resolution of
100 to 200 km grid spacing or 10,000 to 40,000 km2. The whole Azuero peninsula has an area of 8000 km2

(with a length of 100 km and a width of 90 km). In contrast to the Azuero Region, we only consider the
eastern part of this peninsula in this study, which has linear measurements of ~100 km. Therefore, CMIP5
models have problems and cannot resolve the Azuero Region, but MRI-AGCM can do a good job in the
present climate simulation in Panama as described in [21]. Due to the limited computer resources, 25-year
simulations in both the present and future climates are available at the end-of-century. It is noteworthy that
20 km simulations consume about 103 computer resources for 200 km simulations. Therefore, a 25-year
time-sliced period was chosen for this study, instead of a sequential simulation for the whole period.

Moreover, RCP8.5 was selected because of having the highest radiative forcing among the RCPs.
Instead of projecting other RCP scenarios, the MRI-AGCM model explores four different spatial
uncertainties in future changes in SST with 20 km grid spacing. Based on the premise that future changes
in climates especially precipitation and surface air temperatures under the three other RCPs are in range
from the present climate to the climate under the RCP8.5 and as such can be interpolated.

2.4. Historical Maize Production in Panama and Azuero

In Panama, more than 487,000 tons of maize are consumed per year, of which 96,600 (around 20%) are
produced domestically and the rest are imported. Most of the commercial maize (around 88%) is used for
animal feed, and the rest is for human consumption. In the Azuero region, the planted area has been on
average of 18,000 hectares in the last ten seasons [35]. In fact, it has been calculated that over 97% of the
national production is produced in the Azuero Region [27]. In terms of yield, the average tonnage per
hectare (t ha−1) area calculated for the region from 1990 to 2017 is 3.9 t ha−1. A graph detailing the yield
per year is shown in Figure 2.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

t/ha

Figure 2. Maize Yield for the Azuero region (1990–2017). Source: MIDA [36].

It is important to notice that in this graph that the year 1997, which is accounted as one of the hardest
hitting El Niño–Southern Oscillation (ENSO) in the Region, a proactive mitigation work was put in place.
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The planting plots was mostly carried out on the southernmost part of the Azuero Region, where in general
there is more water availability, thus not affecting the total yield for the year. However, the total sown and
harvested area were considerably lower that previous years. A different scenario happened during the
2015 ENSO event. Mitigation measures were not put in place and a significant reduction of the total yield
was tabulated for the 2015, as it can be seen in Figure 2, when comparing the 2014, 2015, and 2016 yields
per hectare.

2.4.1. Maize Yield Model

A long-term experiment that began in 2015 at the El Ejido Experimental Station of IDIAP has been set
up to evaluate two hybrid materials: one susceptible (Pioneer 30F-35) and the other tolerant (P-4226) to
water deficiencies. Seeds are place into plots in dry land (depending on the rainfall of the locality) and
with supplementary drip irrigation to meet the water demands of the crop. Three sowings are carried out
per year to subject the crop to different rainfall regimes and other climatic variables such as temperature,
relative humidity, VPD, solar radiation, and UV in the different periods of crop development.

To further understand the grain yield a regression model was developed for the 30F-35 variety and
two of climatic variables were considered, precipitation and temperature. Correlating the yield of a crop to
an unique climatic variable or to single planting day is difficult. This is because yield is highly influenced
by the weather throughout its development. To solve this situation, the growth stages of the crop that are
most affected by water deficiencies are taken into account.

One way to do this is to adjust the days after planting according to the development of the crop.
For Panama, in Saéz et al. [37], the authors correlated the yield with the average of the different climatic
variables in each growth stage. According to Denmead and Shaw [38] and McWilliams et al. [39], the stages
can be divided as follows.

• The first stage goes from germination to V9 (0 to 30 days after planting – DAP); in this stage, the hydric
deficiency affects very little the grain yield and there are no losses in the yield if hydric deficiencies
appear.

• The second stage begins in V10 until VT (31 to 50 DAP), in this period several components of the yield
are defined, such as the number of rows and the number of grain per row of the ears. A deficiency in
this stage can cause up to a 25% reduction in performance potential.

• The third stage begins in R1 and ends in R3 (51 to 80 DAP); this is the most critical stage of the
crop [40], it is the stage where the plant has the highest water consumption [41], a water deficiency in
the crop can reduce the yield up to 50% of its potential.

• The fourth and last stage comprises from R4 to R6, and in this stage there may be a 25% reduction in
the presence of water deficiencies in the development of the crop.

Finally, the yield was correlated with the climatic conditions in each of these stages with a regression
model. The regression was fitted with observed data from the Azuero region for the 2015, 2016, and 2017
harvest years, under rainfed conditions. The resulting model achieved a R2 of 0.96 with all the parameters
of the equation being significant (p < 0.10). The resulting model and its coefficients are expressed in the
Equation (1). Further details of the fitting of the model are described in Table A1.

Yield = 0.028× PRE3 − 2.078× TEMP3 + 0.045× PRE4 + 2.109× TEMP4 (1)

where Yield is the grain yield in t ha−1, PRE3 represents the accumulated rainfall between 51 and 80 DAP,
TEMP3 represents the average temperature between 51 and 80 DAP, PRE4 represents accumulated rainfall
between 81 and 100 DAP, and TEMP4 represents the average temperature between 81 and 100 DAP. It is
important to notice that the sub-indexes 3 and 4 are just a way to refer to third and fourth stages of the
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crop growth. A validation of the model is described in detail in the Appendix A, with Table A2, showing
the residuals of the model in two subsequent periods 2018 and 2019.

It is important to explain that the regression model presented has a way to account for independent
climatic effects. In fact, to isolated the effect of rain in crop yield, three different planting dates (21 August,
23 September, 10 October) are used. These dates are important as they are correlated to the precipitation
and overall water availability of the Azuero Region. Rainfall in the Azuero region begins at the end of
April and increases until September, and decreases in November until stopping in December. These dates
are important from the plating perspective and further the delay in planting the greater the impact on the
yield [25].

2.5. Determining the Impact of Future Climate in Maize Yield at the End-of-century

For determining the impact of future climate in Maize Yield for Azuero, first the accumulated rainfall
and the average temperature for the 2075–2099 period were extracted in correspondence to the normal
planting intensive months in the Azuero region (August to December) for both C0 and C1 SST-ensembles.

The analysis consisted of comparing the average maize yield observed and projected for present
time (Figure 2), to the calculated yield using Equation (1) with projected estimates (C0, C1, C2, and C3
ensembles) for precipitation and temperature. Moreover, a comparison between plantation dates was
made, with 100 DAP happening in an earlier date (21 August), a middle date (23 September), and later date
(10 October), reflecting the extremes of planting dates that have been observed in the Azuero region [25,27].

A simple delta-change correction Equation (2) was proposed to adjust the yield values predicted by the
regression model in present time data (SFA):

Yc = Ypp ×
(

Ȳhist

Ȳpp

)
(2)

where Yc is the corrected yield, Yhist is the average historical yield for the period, and Ypp the average yield
projected by the model.

For future time yield, a modified version of Equation (2) is used. It was modified to be used
as estimates for the end-of-century calculations, in the similar way that Araya et al. used it in [42].
The modified equation is shown in (3):

Yf c = Yf p ×
(

Ȳpp

Ȳf p

)
(3)

where Yf c is the corrected yield, Ypp is the present time average yield, and Yf p the average future yield
projected by the model at the end of century.

2.6. Bias Correction for Projections

Climate modeling is far from perfect and it is known that models tend to overestimate the projected
values. Moreover, most GCMs do not consider regional information in their resolutions, and therefore
information is lost on topographic variability and related atmospheric processes, causing errors and
uncertainties. Bias correction is a postprocessing technique useful to provide a better fit to the
output values of model that can be biased due to the uncertainty in parameterization of unsolved
or unaccounted processes [43]. Various methods have been developed to make these corrections,
such as Bias correction [44,45], Delta Change method, Change Factor, Linear scaling, Variance Scaling,
Power Transformation, and Quantile mapping [46,47]. Among these correction methods listed, the Delta
Method is often used to correct the variables of extreme temperatures and rainfall was of interest. Therefore,
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in this work the Delta Method was selected to correct for errors in projection estimates of average maximum
and minimum temperature and daily precipitation estimates [31].

The equations used to correct the temperature (T) (Equation (4)) and precipitation (P) (Equation (5))
are listed below,

Tf c = Thist + (T̄f p − T̄pp) (4)

Pf c = Phist ×
(

P̄f p

P̄pp

)
(5)

where Tf c and Pf c are the corrected future estimates for temperature and precipitation, f p is the future
time projected data (SFA), pp is present time projected data (SFA), and hist is the historical observed that
data for each of the variables. These bias correction equations were used for both SST-ensembles C0 and
C1 to estimate corrected temperature and corrected precipitation values.

3. Results and Discussion

3.1. Assessment of the Projected Data

For the extraction of the projected data, a subroutine was defined in Grid Analysis and Display
System (GrADS). Latitude and longitude were varied to obtain data at the country level and then adjusted
to further analyze the Azuero Region for both temperature and precipitation. For each variable daily
projections were grouped in monthly files and further analyzed.

Furthermore, a comparison was made between the four different SST-ensembles schemes for the
variables precipitation (Figure 3A) and average daily temperature (Figure 3B) and both extremes, minimum
(Figure 3C) and maximum temperatures (Figure 3D), for all SST-ensembles.

According to Figure 3A, plot for C0 shows the typical heat wave of the Azuero Region. Interestingly,
it shows the same pattern of Veranillo, with a decrease in precipitation in the month of June. In contrast,
for projections under C1 a big change in precipitation months appears. The peak rainy season, usually
perceived in October is shown to happen in June. This shift is very important since, the maize planting
period usually is centered around this peak in Azuero and historically, the average for the region in the
months August–December is around 635mm. On the other hand, projections for C2 follows a shifted
but almost normal pattern with highest rainfall would be June–August. This implies that SST-Ensembles
C1 and C2 project significant variations in Azuero precipitation at the end of the century. It can also be
suggested that C0 will reflect the present time climate for the localities to the northern part of the Azuero
region, while C1, C2, and C3 will reflect present climates that now occur on localities on the southern
portion of Azuero region. This with respect to data observations in years prior to the current [25].

In regards to monthly temperatures for the Azuero region at the end-of-century, Figure 3B shows
that the four SST-ensembles project temperatures above the annual average temperature 27.8 ◦C [26],
but remain between the average temperature for the Azuero Region (28 ◦C and 34 ◦C).

Figure 3C shows the monthly averages of extreme minimum temperature. Figure 3D shows the
monthly averages of extreme maximum temperature. The minimum temperatures are projected to be
between 28 ◦C and 30 ◦C. While the maximum temperatures are projected to be between 29 ◦C and
32 ◦C. According to the data from the work in [21], values are observed for the minimum temperatures
(14.4 ◦C and 18.3 ◦C) and maximum (35.4 ◦C and 38.4 ◦C) in the Azuero region from historical data. When
comparing historical values versus projected values, we can affirm that the model tends to overestimate
the minimum temperature and underestimate the maximum temperature.
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Figure 3. Comparison of monthly averages in the 2075–2099 period under different SST schemes (C0 and
C1) and the RCP8.5 trajectory. Precipitation month by month (A), Average Temperature month by month
(B), and Minimum and Maximum Temperature for C0 and C1 SST Schemes (C,D).

3.2. Crop Yield

Using the model in Equation (1) and the projected data shown in Figure 3, initial yield estimates for
present time data (SPA) for Azuero region were calculated. A comparison of the historical yields in the
1990–2003 (average of 3.5 t ha−1) and the projected estimates for the same period is shown in Figure 4.
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Figure 4. Historical, Projected Present time data, and Corrected Present time maize yield in the
1990–2003 period.

As it can be seen in Figure 4 the projected values for present time are higher than the observed
(average of 21.70 t ha−1). By using Equation (2), these estimates were corrected to values shown in gray in
the figure with an root mean square error (RMSE) of 1.06.

Tables 1 and 2 show the results of the calculated yield using the proposed regression model.
The planting date corresponds to 21 August, 23 September, and 10 October of each year. The values
provided by the model project annual production in the Azuero region range from 2 t ha−1 to more than
60 t ha−1 (minimum and maximum values are shown in italics for each column). The average for the
whole 25-year period for each planting date and SST ensemble is annotated at the bottom of the table
in italics.

By comparing the results of Tables 1 and 2, the results for the first two dates (21 August and
23 September) correspond to early and mid planting dates in the Azuero region and show higher yield
values than the last date (10 October), which otherwise is a date of late sowing with a greater risk of being
exposed to drought and consequently to water stress.

In terms of maximum and minimum yields, 2078 appears to have the lowest yields regardless of
planting date, while 2091 appears to have the highest yields. It is worth mentioning the years 2083,
2085, and 2093, which reflect the experimental set-up used to make the projections with the MRI-AGCM,
with the interannual variations of Sea Surface Temperatures corresponding events in present time climate.
For instance, the year 2075 is modeled after 1979 (a normal year). The years 2078, 2083, 2091, and 2093 are
modeled after 1982, 1987, 1995, and 1997, respectively, which were El Niño–Southern Oscillation (ENSO)
years, with 1997 having the hardest hitting and largest ENSO in the 20th century. Last, the year 2085
is modeled after 1989, which had La niña events until May or June. It is well known that ENSO affects
precipitation and rain patterns in Central America [48]. Specifically, ENSO usually means less overall
precipitation and higher temperatures in the Azuero Region. It seems that the projections are well adjusted
to the observed model years, which is shown in the projected maize yields.

In general the predicted yields are above the annual observed (1990–2017) average yield in Azuero,
which is equal to 3.6 t ha−1, therefore a correction was made using Equation (3) for future time yields.

Following that correction the average change from the simulated baseline (1990–2003) was calculated
and are summarize by pentad in Tables 3 and 4, respectively. (The minimum and maximum values are
shown in italics for the whole period column). The average for the all pentads (25-year period) for each
planting date and SST ensemble is annotated at the bottom of the table in italics.
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Table 1. Future time yields in tha−1 for C0 and C1 SST-ensemble and for early, mid, and late planting dates.

C0 C1

Year 21 August 23 September 10 October 21 August 23 September 10 October

2075 36.3 18.0 13.4 18.1 13.5 13.4
2076 40.4 11.0 16.7 28.1 16.2 12.9
2077 29.5 30.8 14.4 22.5 19.8 10.0
2078 7.6 7.6 2.5 3.7 4.3 3.7
2079 16.3 50.2 24.8 22.9 30.3 14.1
2080 36.4 32.1 10.7 20.0 32.9 23.6
2081 28.6 24.9 6.8 11.9 17.0 15.5
2082 29.1 43.9 11.1 15.4 17.6 5.5
2083 37.2 56.4 16.8 26.3 28.5 13.9
2084 29.3 27.1 17.3 24.1 19.1 11.8
2085 33.9 39.0 17.9 22.8 20.9 5.4
2086 23.6 38.1 19.5 22.6 21.9 10.9
2087 28.1 24.3 10.3 11.5 14.5 9.9
2088 50.7 30.6 12.9 20.8 16.7 7.5
2089 37.3 62.8 13.5 16.8 28.9 5.8
2090 36.3 30.1 4.8 12.5 18.2 7.7
2091 63.2 60.9 34.8 48.5 35.9 20.4
2092 24.3 22.6 15.5 20.0 18.0 10.6
2093 15.2 12.2 4.2 5.2 6.7 4.2
2094 32.4 45.7 19.2 24.2 27.9 21.1
2095 40.1 22.2 20.9 34.9 22.1 14.6
2096 49.6 28.3 18.7 29.1 16.1 9.7
2097 38.0 22.6 16.9 31.9 25.7 14.2
2098 20.0 24.8 5.6 6.2 12.8 8.6
2099 24.2 63.6 — 16.6 24.3 —

Average 32.3 33.2 14.6 20.7 20.4 11.4

Results analyzed for the whole 2075–2099 period shows two very distinct patterns. In general
estimations from C0, C2, and C3 SST-ensemble showing a greater positive change from baseline,
with average increases above 40% for the whole period and with heavy influence in the later planting date,
more prominent in the 2080–2084 and 2085–2090 periods.

For the C1 SST-ensembles the story is reversed with negative change or decrease in yield overall,
with having negative averages for most pentads and specifically negative average yields for the whole
2075–2099 period. This phenomenon might be attributed to the shift in the precipitation peak in the 2nd
and 3rd trimester of the year far from the maize planting season and the overall greater temperature
variability as is shown in Figure 3, with maximum and minimums higher and lower when compared to
C0 estimates.
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Table 2. Future time yields in tha−1 for C2 and C3 SST-ensemble and for early, mid, and late planting dates.

C2 C3

Year 21 August 23 September 10 October 21 August 23 September 10 October

2075 27.3 10.7 7.6 23.7 29.9 24.2
2076 34.6 19.2 11.8 34.6 18.9 7.3
2077 27.3 15.9 10.2 11.5 14.2 13.4
2078 6.1 3.1 3.0 8.8 6.3 4.5
2079 31.0 31.7 18.6 30.7 31.2 23.8
2080 32.1 17.2 11.1 24.1 12.1 12.9
2081 33.1 17.5 16.6 48.2 18.0 5.4
2082 21.6 5.5 3.7 31.8 26.6 20.5
2083 34.1 30.8 25.2 33.9 60.0 48.3
2084 35.4 34.8 24.2 30.8 20.6 15.8
2085 35.6 42.1 28.1 35.7 25.4 20.0
2086 22.2 16.8 15.4 34.7 13.7 11.0
2087 19.4 5.4 4.1 18.4 12.2 9.5
2088 49.4 21.2 8.8 53.2 27.5 16.3
2089 30.2 25.9 11.2 20.8 24.1 17.4
2090 16.9 6.8 5.3 34.2 22.2 13.4
2091 55.6 34.9 25.6 24.9 28.2 21.2
2092 31.1 28.2 23.8 44.3 46.1 31.1
2093 18.2 2.9 2.1 20.0 11.1 8.7
2094 38.7 15.0 13.2 34.1 55.1 36.6
2095 31.5 20.2 18.9 30.3 22.8 20.4
2096 30.8 13.3 10.1 50.7 38.4 25.7
2097 31.7 21.2 11.7 34.2 22.6 15.6
2098 41.2 13.8 5.3 14.7 7.5 6.3
2099 36.8 25.3 — 54.9 34.1 —

Average 30.9 19.2 13.1 31.3 25.2 17.9

Table 3. Average change in percentage from simulated baseline for 5-year period at the End-of-Century for
C0 and C1 SST-Ensembles.

C0 C1

Period 21 August 23 September 10 October 21 August 23 September 10 October

2075–2079 20% 8% −34% −12% −23% −50%
2080–2084 48% 70% −42% −10% 6% −35%
2085–2089 60% 79% −32% −13% −5% −64 %
2090–2094 58% 58% −28% 2% −2% −41%
2095–2099 58% 49% −29% 9% −7% −46%

2075–2099 49% 53% -33% −5% −6% −47%

Table 4. Average change in percentage from simulated baseline for 5-year period at the End-of-Century for
C2 and C3 SST-Ensembles.

C2 C3

Period 21 August 23 September 10 October 21 August 23 September 10 October

2075–2079 16% −26% −53% 1% −7% −33%
2080–2084 44% −2% −25% 56% 27% −5%
2085–2089 45% 3% −38% 50% −5% −32%
2090–2094 48% −19% −36% 45% 50% 2%
2095–2099 58% −13% −47% 70% 16 −22%

2075–2099 42% −12% −39% 44% 16% −18%
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3.3. Bias Correction of Projected Estimates

As the values for the maize yield even when corrected showed to be higher than expected and to
further enhance the maize yield predictions bias correction was made using the Delta change Method (DM)
described in Equation (4). However, correction was made to the SST-ensembles with extreme behaviors
around the month of June (Figure 3), namely, SST-ensemble C0 and C1.

Figure 5A,C shows the projected and corrected maximum and minimum temperature for C0 and C1
SST-ensembles. It is observed that for both the projected and corrected values, the differences between
each SST ensembleare minimal. The maximum temperature projected values reach up to 30 ◦C; however,
for the corrected values, there is an increase of up to 6 ◦C. Similarly for the minimum temperature, values
go up to 30 ◦C; whereas for the corrected values there is a decrease of 5 ◦C. In general it can be said that it
reflects how the future projections tends to underestimate the maximum temperature and overestimate
the minimum temperature.

The temperature variability (maximum and minimum), projected for the end of the century
(2075–2099), in relation to historic monthly averages, are shown in Figure 5B,D. It is important to state
that for the historical values, the maximum temperature was available up to 2017, while the minimum
temperature was only available up to 2015.

The maximum temperature, shown in Figure 5B, values reach up to 36 ◦C for the months of April
and May and 33 ◦C in August. This reflects an increase in temperature, but a consistent behavior is
maintained during the dry and rainy seasons. This last statement corresponds to the comparison of the
historical maximum temperature averages (1965–2017) in Azuero [49] with values up to 33 ◦C in April.
The minimum temperature, shown in Figure 5D, values are between 25 and 27 ◦C. This reflects an increase
in temperature compared to the historical minimum temperature averages (1965–2015) in Azuero with an
average value of 23 ◦C. However, the minimum temperature does not show such a marked variability due
to the dry and rainy seasons.

A further analysis consisted of comparing the monthly precipitation averages from historical data
(1965–2017) and the corrected data (2075–2099) can be seen in Figure 6. Figure 6A shows the daily
precipitation data projected by the model for C0 and C1 SST-ensembles. It is observed that the projected
values the differences between each scheme are shown in the month of June (5 mm/day).

The projected precipitation values were up to 25 mm/day; however, for the corrected values shown
in Figure 6A, this amount is reduced to 8 mm/day in June. Figure 6B shows that the projected values are
significantly reduced and coincide with the typical behavior of the dry and rainy seasons, where greater
precipitation is observed during the months of May to November, up to 15 mm/day on a monthly average
for October. This reflects an increase in precipitation with respect to the historical monthly averages
(1965–2017) in Azuero [26] with values up to 7 mm/day in October. It is interesting to note that the
typical heat wave of July is projected for the end of the century and that the sowing months of August to
November ensure the production of maize in Azuero.

As a general result, the behavior of the precipitation variable at the end of the century may give
us a sign that the projection can be more accurate for this variable, although the increase in extreme
temperatures coincides with what other models project in the latest IPCC reports [32]. Moreover, it is well
known that both the increased precipitation and temperatures will affect maize cultivation in Azuero,
causing, for example, water stress, increased pests, among other problems.
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Figure 5. Comparison of the monthly temperature for projected estimates under the C0 and C1
SST-ensembles and their respective corrected counterparts: Monthly maximum temperatures (A), Monthly
minimum temperatures (C). Comparison of the corrected temperature to the historical meteorological data:
maximum temperatures (B), minimum temperatures (D) .
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Figure 6. Comparison of monthly averages of daily precipitation for data projected by the model (RCP8.5
trajectory and C0 and C1 SST schemes) and the respective data corrected using Delta Method (A).
Comparison of the corrected precipitation values with the historical averages (B).
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4. Conclusions

It is well known that climate variability translates to an important change in the rules of the game for
crop production. This obviously represents enormous challenges for producers, farmers, and government,
but also for other actors in academia that might need to provide solutions for planning and mitigation.
In consequence, it implies that there is a necessity to make deep adjustments in the agricultural activity for
its future subsistence [25]. In other words, understanding that climate change implies a clear and direct
risk for food security at the regional and global levels. For this reason, there is a need to study climate
projections from models and their short-, medium, and long-term for the agricultural sector [12]. For The
Republic of Panama, this risk extends to understanding the changes that might occur in water critical
activities in Panama (see The Panama Canal operation, hydroelectric power generation, and, of greater
importance to our study, agriculture) [20].

In this work, projected variables precipitation and temperature, from the MRI-AGCM 3.2 model, were
studied in the Azuero region. Results confirmed that an increase in precipitation will be appreciated in the
region at the end of the century [50]. More specifically, daily precipitation is projected to go up on average
>15mm and temperatures will rise above 26 ◦C and up to 36 ◦C. Regarding localities, future precipitation
projections are adjusted for localities north of Azuero region with respect to the C0 SST-ensemble. Future
precipitation projections are adjusted for the localities south of Azuero with respect to SST-ensembles C1,
C2, and C3.

Simple correction was used to reduce the yield on the present time projections (SPA). The Delta
Method was used to reduce the biases of the future climate estimates (SFA), for both variables precipitation
and temperature. In the case of the maximum temperature, the values increase with respect to the corrected
ones. The regression model tends to underestimate the maximum projected temperature and overestimate
the minimum projected temperature. Not surprisingly, the lowest yields are found for all SST-ensemble
for the later planting date. More interestingly, the yield model showed that for the C0, C2, and C3
SST-ensembles, the yield will double, while for the C1 SST-ensemble predicts, an average of 5% decrease
for the period. This suggests that while the yield model shows that the production will be doubled, this
change is sensitive to the future sea surface temperature distribution.

As future work, in terms of the agronomic model, a longer time series could be used to calculate
maize yield. In this new model, it would be sensible to include the number of plants that exist at harvest
time, to adjust the expected yield to the number of maize plants per hectare. This number now amounts to
65,000 per hectare and is a crucial factor to determine the yield.

Another important point would be to have data on irrigated maize, to be able to have a model that
predicts the yield without water deficiencies. This will help to further separate the effect of rainfall and
temperature, since for the regression model for the Azuero Region, rainfall captures more the variability of
the response of the grain yield than temperature. This is in part due to its greater variation. In that same
vein a model can incorporate a different treatment of variables, for instance de-trending of dependent and
independent variables, log-transformation of the yield variable), to provide additional information about
on how to determine the independent effect of temperature and precipitation on the crop yield, on present
and future time.

Precipitation is well studied phenomenon in Panama, mostly for ensuring its availability for the
functioning of the Panama Canal and the water cycle on the Canal watershed. However, other variables
that are important for crop growth, for instance, VPD, solar radiation, and UV rays, which are important
for maize, have not been projected in the end-of-century period. These variables should be incorporated
into newer models as they become available to the research community.

Moreover, it is known that the CO2 fertilization effect [51] is not well managed in statistical crop
models [14]. Subsequent models need to include this component either by making an ensemble of
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both process-based and statistical crop models as suggested by Roberts et al. [13] and Lobell et al. [11],
subtracting the effect of CO2 from having yields under different RCPs [10], calculating it from a multi
model comparison [5], or estimating it on-site as are done with the rain-forest in Barro Colorado Island in
Panama [52].

Finally, it is important to state that this study and similar studies are of great relevance; The Azuero
Region alone is responsible for over 95% of the maize grown in the country, with 18,000 hectares produced
annually and a total production of 45,000 tons of grains per year [49]. Therefore, all mitigation efforts and
efforts to understand future climates and their implications are very for the sovereignty and food security
of Panama.
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Appendix A. Regression Model Validation

As introduced in Section 2.4.1, the model corresponds to multiple regression using material Pioneer
30F-35 yield of the plots in dry land for the 2015–2017 period. The regression model takes into account the
precipitation and average temperature in the third and fourth stages, with all variables being significant at
p < 0.10, and with precipitation having a greater influence in the yields, as shown in Table A1.

Table A1. Regression Model taken into account observations from 2015 to 2017 (3 years).

Variable DF Parameter Estimate Standard Error t-Value p >|t|

PRE3 1 0.0282 0.01 2.9 0.03
PRE4 1 0.0446 0.01 3.08 0.03

TEMP3 1 −2.0786 0.96 −2.16 0.08
TEMP4 1 2.1093 0.95 2.21 0.08

As for model validation (or out-of-sample validation) of the regression model, the yield of 2018 and
2019 was used in three different planting dates, results shown in Table A2.

Validation results with the regression model show that on average the residual value amounted to
1.47 t ha−1. More importantly, the predicted yields were comparable, with the observed yields, and even
more interesting and effect of planting date, that is difference between planting on an earlier date and later
date is distinguishable, and the yield is reduced.
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Table A2. Residual Analysis of Yield for 2018 and 2019 for the model.

Year Planting Date Observed Yield Predicted Yield Residual

21 August 9.42 6.69 2.73
23 September 6.69 3.26 3.422018

10 October 1.31 0.93 0.38
21 August 7.95 5.20 2.75

23 September 6.15 3.67 2.482019
10 October 1.49 4.39 −2.90

Average 1.47
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